ﻻ يوجد ملخص باللغة العربية
Location privacy has been extensively studied in the literature. However, existing location privacy models are either not rigorous or not customizable, which limits the trade-off between privacy and utility in many real-world applications. To address this issue, we propose a new location privacy notion called PGLP, i.e., textit{Policy Graph based Location Privacy}, providing a rich interface to release private locations with customizable and rigorous privacy guarantee. First, we design the privacy metrics of PGLP by extending differential privacy. Specifically, we formalize a users location privacy requirements using a textit{location policy graph}, which is expressive and customizable. Second, we investigate how to satisfy an arbitrarily given location policy graph under adversarial knowledge. We find that a location policy graph may not always be viable and may suffer textit{location exposure} when the attacker knows the users mobility pattern. We propose efficient methods to detect location exposure and repair the policy graph with optimal utility. Third, we design a private location trace release framework that pipelines the detection of location exposure, policy graph repair, and private trajectory release with customizable and rigorous location privacy. Finally, we conduct experiments on real-world datasets to verify the effectiveness of the privacy-utility trade-off and the efficiency of the proposed algorithms.
We firstly suggest privacy protection cache policy applying the duty to delete personal information on a hybrid main memory system. This cache policy includes generating random data and overwriting the random data into the personal information. Propo
In recent years, concerns about location privacy are increasing with the spread of location-based services (LBSs). Many methods to protect location privacy have been proposed in the past decades. Especially, perturbation methods based on Geo-Indistin
Governments and researchers around the world are implementing digital contact tracing solutions to stem the spread of infectious disease, namely COVID-19. Many of these solutions threaten individual rights and privacy. Our goal is to break past the f
In this demonstration, we present a privacy-preserving epidemic surveillance system. Recently, many countries that suffer from coronavirus crises attempt to access citizens location data to eliminate the outbreak. However, it raises privacy concerns
Location-Based Services (LBSs) provide invaluable aid in the everyday activities of many individuals, however they also pose serious threats to the user privacy. There is, therefore, a growing interest in the development of mechanisms to protect loca