ﻻ يوجد ملخص باللغة العربية
In this demonstration, we present a privacy-preserving epidemic surveillance system. Recently, many countries that suffer from coronavirus crises attempt to access citizens location data to eliminate the outbreak. However, it raises privacy concerns and may open the doors to more invasive forms of surveillance in the name of public health. It also brings a challenge for privacy protection techniques: how can we leverage peoples mobile data to help combat the pandemic without scarifying our location privacy. We demonstrate that we can have the best of the two worlds by implementing policy-based location privacy for epidemic surveillance. Specifically, we formalize the privacy policy using graphs in light of differential privacy, called policy graph. Our system has three primary functions for epidemic surveillance: location monitoring, epidemic analysis, and contact tracing. We provide an interactive tool allowing the attendees to explore and examine the usability of our system: (1) the utility of location monitor and disease transmission model estimation, (2) the procedure of contact tracing in our systems, and (3) the privacy-utility trade-offs w.r.t. different policy graphs. The attendees can find that it is possible to have the full functionality of epidemic surveillance while preserving location privacy.
Large organizations that collect data about populations (like the US Census Bureau) release summary statistics that are used by multiple stakeholders for resource allocation and policy making problems. These organizations are also legally required to
In this work we explore the problem of answering a set of sum queries under Differential Privacy. This is a little understood, non-trivial problem especially in the case of numerical domains. We show that traditional techniques from the literature ar
LDP (Local Differential Privacy) has been widely studied to estimate statistics of personal data (e.g., distribution underlying the data) while protecting users privacy. Although LDP does not require a trusted third party, it regards all personal dat
In modern information systems different information features, about the same individual, are often collected and managed by autonomous data collection services that may have different privacy policies. Answering many end-users legitimate queries requ
Location privacy has been extensively studied in the literature. However, existing location privacy models are either not rigorous or not customizable, which limits the trade-off between privacy and utility in many real-world applications. To address