ﻻ يوجد ملخص باللغة العربية
Governments and researchers around the world are implementing digital contact tracing solutions to stem the spread of infectious disease, namely COVID-19. Many of these solutions threaten individual rights and privacy. Our goal is to break past the false dichotomy of effective versus privacy-preserving contact tracing. We offer an alternative approach to assess and communicate users risk of exposure to an infectious disease while preserving individual privacy. Our proposal uses recent GPS location histories, which are transformed and encrypted, and a private set intersection protocol to interface with a semi-trusted authority. There have been other recent proposals for privacy-preserving contact tracing, based on Bluetooth and decentralization, that could further eliminate the need for trust in authority. However, solutions with Bluetooth are currently limited to certain devices and contexts while decentralization adds complexity. The goal of this work is two-fold: we aim to propose a location-based system that is more privacy-preserving than what is currently being adopted by governments around the world, and that is also practical to implement with the immediacy needed to stem a viral outbreak.
The era of Big Data has brought with it a richer understanding of user behavior through massive data sets, which can help organizations optimize the quality of their services. In the context of transportation research, mobility data can provide Munic
Since the global spread of Covid-19 began to overwhelm the attempts of governments to conduct manual contact-tracing, there has been much interest in using the power of mobile phones to automate the contact-tracing process through the development of
Location privacy has been extensively studied in the literature. However, existing location privacy models are either not rigorous or not customizable, which limits the trade-off between privacy and utility in many real-world applications. To address
Personally identifiable information (PII) can find its way into cyberspace through various channels, and many potential sources can leak such information. Data sharing (e.g. cross-agency data sharing) for machine learning and analytics is one of the
Network intrusion is a well-studied area of cyber security. Current machine learning-based network intrusion detection systems (NIDSs) monitor network data and the patterns within those data but at the cost of presenting significant issues in terms o