ﻻ يوجد ملخص باللغة العربية
The nonlinear force-free field (NLFFF) modeling has been extensively used as a tool to infer three-dimensional (3D) magnetic field structure. In this study, the dependency of the NLFFF calculation with respect to the initial guess of the 3D magnetic field is investigated. While major part of the previous studies used potential field as the initial guess in the NLFFF modeling, we adopt the linear force-free fields with different constant force-free alpha as the initial guesses. This method enables us to investigate how unique the magnetic field obtained by the NLFFF extrapolation with respect to the initial guess is. The dependence of the initial condition of the NLFFF extrapolation is smaller in the strong magnetic field region. Therefore, the magnetic field at the lower height ($< 10$ Mm) tends to be less affected by the initial condition (correlation coefficient C>0.9 with different initial condition), although the Lorentz force is concentrated at the lower height.
Strong solar flares and coronal mass ejections, here defined not only as the bursts of electromagnetic radiation but as the entire process in which magnetic energy is released through magnetic reconnection and plasma instability, emanate from active
Solar flares and coronal mass ejections are among the most prominent manifestations of the magnetic activity of the Sun. The strongest events of them tend to occur in active regions (ARs) that are large, complex, and dynamically evolving. However, it
Solar active regions (ARs) that produce strong flares and coronal mass ejections (CMEs) are known to have a relatively high non-potentiality and are characterized by delta-sunspots and sheared magnetic structures. In this study, we conduct a series o
We present results of a study of intermittency and multifractality of magnetic structures in solar active regions (ARs). Line-of-sight magnetograms for 214 ARs of different flare productivity observed at the center of the solar disk from January 1997
We present analysis of the magnetic field in seven solar flare regions accompanied by the pulsations of hard X-ray (HXR) emission. These flares were studied by Kuznetsov et al. (2016) (Paper~I), and chosen here because of the availability of the vect