ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic structure of solar flare regions producing hard X-ray pulsations

67   0   0.0 ( 0 )
 نشر من قبل Ivan Zimovets Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present analysis of the magnetic field in seven solar flare regions accompanied by the pulsations of hard X-ray (HXR) emission. These flares were studied by Kuznetsov et al. (2016) (Paper~I), and chosen here because of the availability of the vector magnetograms for their parent active regions (ARs) obtained with the SDO/HMI data. In Paper~I, based on the observations only, it was suggested that a magnetic flux rope (MFR) might play an important role in the process of generation of the HXR pulsations. The goal of the present paper is to test this hypothesis by using the extrapolation of magnetic field with the non-linear force-free field (NLFFF) method. Having done this, we found that before each flare indeed there was an MFR elongated along and above a magnetic polarity inversion line (MPIL) on the photosphere. In two flare regions the sources of the HXR pulsations were located at the footpoints of different magnetic field lines wrapping around the central axis, and constituting an MFR by themselves. In five other flares the parent field lines of the HXR pulsations were not a part of an MFR, but surrounded it in the form of an arcade of magnetic loops. These results show that, at least in the analyzed cases, the single flare loop models do not satisfy the observations and magnetic field modeling, while are consistent with the concept that the HXR pulsations are a consequence of successive episodes of energy release and electron acceleration in different magnetic flux tubes (loops) of a complex AR. An MFR could generate HXR pulsations by triggering episodes of magnetic reconnection in different loops in the course of its non-uniform evolution along an MPIL. However, since three events studied here were confined flares, actual eruptions may not be required to trigger sequential particle acceleration episodes in the magnetic systems containing an MFR.



قيم البحث

اقرأ أيضاً

258 - M. Tomczak , Z. Szaforz 2014
We present a case study of the solar flare (SOL2001-10-02T17:31) that showed quasi-periodic pulsations (QPPs) in hard X-rays with two simultaneously excited periods, P_1 = 26-31 s and P_2 = 110 s. Complete evolution of the flare recorded by the Yohko h telescopes, together with the patrol SOHO/EIT images, allowed us to identify magnetic structures responsible for particular periods and to propose an overall scenario which is consistent with the available observations. Namely, we suggest that emerging magnetic flux initiated the reconnection with legs of a large arcade of coronal loops that had been present in an active region for several days. The reconnection excited MHD oscillations in both magnetic structures simultaneously: period P_1 was generated in the emerging loop and in a loop being a result of the reconnection; period P_2 occurred in the arcade. Both resonators produced photons of different spectra. We anticipate that multiperiodicity in hard X-rays can be a common feature of flare hybrids, i.e. the events, in which magnetic structures of different sizes interact.
Solar flares often display pulsating and oscillatory signatures in the emission, known as quasi-periodic pulsations (QPP). QPP are typically identified during the impulsive phase of flares, yet in some cases, their presence is detected late into the decay phase. Here, we report extensive fine structure QPP that are detected throughout the large X8.2 flare from 2017 September 10. Following the analysis of the thermal pulsations observed in the GOES/XRS and the 131 A channel of SDO/AIA, we find a pulsation period of ~65 s during the impulsive phase followed by lower amplitude QPP with a period of ~150 s in the decay phase, up to three hours after the peak of the flare. We find that during the time of the impulsive QPP, the soft X-ray source observed with RHESSI rapidly rises at a velocity of approximately 17 km/s following the plasmoid/coronal mass ejection (CME) eruption. We interpret these QPP in terms of a manifestation of the reconnection dynamics in the eruptive event. During the long-duration decay phase lasting several hours, extended downward contractions of collapsing loops/plasmoids that reach the top of the flare arcade are observed in EUV. We note that the existence of persistent QPP into the decay phase of this flare are most likely related to these features. The QPP during this phase are discussed in terms of MHD wave modes triggered in the post-flaring loops.
The relationship between X-ray and UV emission during flares, particularly in the context of quasi-periodic pulsations, remains unclear. To address this, we study the impulsive X-ray and UV emission during the eruptive flare of 2011 June 7 utilising X-ray imaging from RHESSI and UV 1700A imaging from SDO/AIA. This event is associated with quasi-periodic pulsations in X-ray and possibly UV emission, as well as substantial parallel and perpendicular motion of the hard X-ray footpoints. The motion of the footpoints parallel to the flare ribbons is unusual; it is shown to reverse direction on at least two occasions. However, there is no associated short-timescale motion of the UV bright regions. Additionally, we find that the locations of the brightest X-ray and UV regions are different, particularly during the early portion of the flare impulsive phase, despite their integrated emission being strongly correlated in time. Correlation analysis of measured flare properties, such as the footpoint separation, flare shear, photospheric magnetic field and coronal reconnection rate, reveals that - in the impulsive phase - the 25 - 50 keV hard X-ray flux is only weakly correlated with these properties, in contrast to previous studies. We characterise this event in terms of long-term behaviour, where the X-ray nonthermal, thermal, and UV emission sources appear temporally and spatially consistent, and short-term behaviour, where the emission sources are inconsistent and quasi-periodic pulsations are a dominant feature requiring explanation. We suggest that the short timescale behaviour of hard X-ray footpoints, and the nature of the observed quasi-periodic pulsations, is determined by fundamental, as-yet unobserved properties of the reconnection region and particle acceleration sites. This presents a challenge for current three-dimensional flare reconnection models.
We study the nature of energy release and transfer for two sub-A class solar microflares observed during the second flight of the Focusing Optics X-ray Solar Imager (FOXSI-2) sounding rocket experiment on 2014 December 11. FOXSI is the first solar-de dicated instrument to utilize focusing optics to image the Sun in the hard X-ray (HXR) regime, sensitive to the energy range 4-20 keV. Through spectral analysis of the two microflares using an optically thin isothermal plasma model, we find evidence for plasma heated to temperatures of ~10 MK and emissions measures down to ~$10^{44}~$cm$^{-3}$. Though nonthermal emission was not detected for the FOXSI-2 microflares, a study of the parameter space for possible hidden nonthermal components shows that there could be enough energy in nonthermal electrons to account for the thermal energy in microflare 1, indicating that this flare is plausibly consistent with the standard thick-target model. With a solar-optimized design and improvements in HXR focusing optics, FOXSI-2 offers approximately five times greater sensitivity at 10 keV than the Nuclear Spectroscopic Telescope Array (NuSTAR) for typical microflare observations and allows for the first direct imaging spectroscopy of solar HXRs with an angular resolution at scales relevant for microflares. Harnessing these improved capabilities to study the evolution of small-scale events, we find evidence for spatial and temporal complexity during a sub-A class flare. These studies in combination with contemporanous observations by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO/AIA) indicate that the evolution of these small microflares is more similar to that of large flares than to the single burst of energy expected for a nanoflare.
We report the first science results from the newly completed Expanded Owens Valley Solar Array (EOVSA), which obtained excellent microwave imaging spectroscopy observations of SOL2017-09-10, a classic partially-occulted solar limb flare associated wi th an erupting flux rope. This event is also well-covered by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in hard X-rays (HXRs). We present an overview of this event focusing on microwave and HXR data, both associated with high-energy nonthermal electrons, and discuss them within the context of the flare geometry and evolution revealed by extreme ultraviolet (EUV) observations from the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory (SDO/AIA). The EOVSA and RHESSI data reveal the evolving spatial and energy distribution of high-energy electrons throughout the entire flaring region. The results suggest that the microwave and HXR sources largely arise from a common nonthermal electron population, although the microwave imaging spectroscopy provides information over a much larger volume of the corona.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا