ترغب بنشر مسار تعليمي؟ اضغط هنا

One-loop Matching for Spin-Dependent Quasi-TMDs

255   0   0.0 ( 0 )
 نشر من قبل Stella Schindler
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Transverse momentum dependent parton distribution functions (TMDPDFs) provide a unique probe of the three-dimensional spin structure of hadrons. We construct spin-dependent quasi-TMDPDFs that are amenable to lattice QCD calculations and that can be used to determine spin-dependent TMDPDFs. We calculate the short-distance coefficients connecting spin-dependent TMDPDFs and quasi-TMDPDFs at one-loop order. We find that the helicity and transversity distributions have the same coefficient as the unpolarized TMDPDF. We also argue that the same is true for pretzelosity and that this spin universality of the matching will hold to all orders in $alpha_s$. Thus, it is possible to calculate ratios of these distributions as a function of longitudinal momentum and transverse position utilizing simpler Wilson line paths than have previously been considered.

قيم البحث

اقرأ أيضاً

Perturbative matching relates the parton quasi-distributions, defined by Euclidean correlators at finite hadron momenta, to the light-cone distributions which are accessible in experiments. Previous matching calculations have exclusively focused on t wist-2 distributions. In this work, we address, for the first time, the one-loop matching for the twist-3 parton distribution function $g_T(x)$. The results have been obtained using three different infrared regulators, while dimensional regularization has been adopted to deal with the ultraviolet divergences. We present the renormalized expressions of the matching coefficient for $g_{T}(x)$ in the $overline{rm MS}$ and modified $overline{rm MS}$ schemes. We also discuss the role played by a zero-mode contribution. Our results have already been used for the extraction of $g_T(x)$ from lattice QCD calculations.
110 - Zhengkang Zhang 2016
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed covariant diagrams. The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
We construct the Lorentz-invariant chiral Lagrangians up to the order $mathcal{O}(p^4)$ by including $Delta(1232)$ as an explicit degree of freedom. A full one-loop investigation on processes involving $Delta(1232)$ can be performed with them. For th e $piDeltaDelta$ Lagrangian, one obtains 38 independent terms at the order $mathcal{O}(p^3)$ and 318 independent terms at the order $mathcal{O}(p^4)$. For the $pi NDelta$ Lagrangian, we get 33 independent terms at the order $mathcal{O}(p^3)$ and 218 independent terms at the order $mathcal{O}(p^4)$. The heavy baryon projection is also briefly discussed.
We consider our recently obtained general structure of two point (self-energy and propagator) functions of quarks and gluons in a nontrivial background like a heat bath and an external magnetic field. Based on this, here we have computed free energy and pressure of quarks and gluons for a magnetized hot and dense deconfined QCD matter in weak field approximation. For heat bath we have used hard thermal loop perturbation theory (HTLpt) in presence of finite chemical potential. For weak field approximations we have obtained the pressure of QCD matter, both with and without the high temperature expansion. The results with high $T$ expansions are completely analytic and gauge independent but depends on the renormalization scale in addition to the temperature, chemical potential and the external magnetic field. We also discuss the modification of QCD Debye mass of such matter for an arbitrary magnetic field. Analytic expressions for Debye mass are also obtained for both strong and weak field approximation. It is found to exhibit some interesting features depending upon the three different scales, i.e, the quark mass, temperature and the strength of the magnetic field. The various divergences appearing in the quark and gluon free energies are regulated through appropriate counter terms. In weak field approximation, the low temperature behavior of the pressure is found to strongly depend on the magnetic field than that at high temperature. We also discuss the specific problem with one-loop HTLpt associated with the over-counting of certain orders in coupling.
Considering the general structure of the two point functions of quarks and gluons, we compute the free energy and pressure of a strongly magnetized hot and dense QCD matter created in heavy-ion collisions. In presence of strong magnetic field we foun d that the deconfined QCD matter exhibits a paramagnetic nature. One gets different pressure in a direction parallel and perpendicular to magnetic field due to the magnetization acquired by the system. We obtain both longitudinal and transverse pressure, and magnetization of a hot deconfined QCD matter in presence of magnetic field. We have used hard thermal loop approximation (HTL) for heat bath. We obtained completely analytic expression for pressure and magnetization under certain approximation. Various divergences appearing in free energy are regulated using appropriate counter terms. The obtained anisotropic pressure may be useful for magnetohydrodynamics description of a hot and dense deconfined QCD matter produced in heavy-ion collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا