ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic pressure of deconfined QCD matter in presence of strong magnetic field within one-loop approximation

101   0   0.0 ( 0 )
 نشر من قبل Bithika Karmakar
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Considering the general structure of the two point functions of quarks and gluons, we compute the free energy and pressure of a strongly magnetized hot and dense QCD matter created in heavy-ion collisions. In presence of strong magnetic field we found that the deconfined QCD matter exhibits a paramagnetic nature. One gets different pressure in a direction parallel and perpendicular to magnetic field due to the magnetization acquired by the system. We obtain both longitudinal and transverse pressure, and magnetization of a hot deconfined QCD matter in presence of magnetic field. We have used hard thermal loop approximation (HTL) for heat bath. We obtained completely analytic expression for pressure and magnetization under certain approximation. Various divergences appearing in free energy are regulated using appropriate counter terms. The obtained anisotropic pressure may be useful for magnetohydrodynamics description of a hot and dense deconfined QCD matter produced in heavy-ion collisions.

قيم البحث

اقرأ أيضاً

We consider our recently obtained general structure of two point (self-energy and propagator) functions of quarks and gluons in a nontrivial background like a heat bath and an external magnetic field. Based on this, here we have computed free energy and pressure of quarks and gluons for a magnetized hot and dense deconfined QCD matter in weak field approximation. For heat bath we have used hard thermal loop perturbation theory (HTLpt) in presence of finite chemical potential. For weak field approximations we have obtained the pressure of QCD matter, both with and without the high temperature expansion. The results with high $T$ expansions are completely analytic and gauge independent but depends on the renormalization scale in addition to the temperature, chemical potential and the external magnetic field. We also discuss the modification of QCD Debye mass of such matter for an arbitrary magnetic field. Analytic expressions for Debye mass are also obtained for both strong and weak field approximation. It is found to exhibit some interesting features depending upon the three different scales, i.e, the quark mass, temperature and the strength of the magnetic field. The various divergences appearing in the quark and gluon free energies are regulated through appropriate counter terms. In weak field approximation, the low temperature behavior of the pressure is found to strongly depend on the magnetic field than that at high temperature. We also discuss the specific problem with one-loop HTLpt associated with the over-counting of certain orders in coupling.
Considering the strong field approximation we compute the hard thermal loop pressure at finite temperature and chemical potential of hot and dense deconfined QCD matter in lowest Landau level in one-loop order. We consider the anisotropic pressure in the presence of the strong magnetic field i.e., longitudinal and transverse pressure along parallel and perpendicular to the magnetic field direction. As a first effort, we compute and discuss the anisotropic quark number susceptibility of deconfined QCD matter in lowest Landau level. The longitudinal quark number susceptibility is found to increase with the temperature whereas the transverse one decreases with the temperature. We also compute the quark number susceptibility in the weak field approximation. We find that the thermomagnetic correction to the quark number susceptibility is very marginal in the weak field approximation.
We have computed the chiral susceptibility in quark-gluon plasma in presence of finite chemical potential and weak magnetic field within hard thermal loop approximation. First we construct the massive effective quark propagator in a thermomagnetic me dium. Then we obtain completely analytic expression for the chiral susceptibility in weak magnetic field approximation. In the absence of magnetic field the thermal chiral susceptibility increases in presence of finite chemical potential. The effect of thermomagnetic correction is found to be very marginal as temperature is the dominant scale in weak field approximation.
78 - N. Tanji , N. Mueller , J. Berges 2016
We investigate axial charge production in two-color QCD out of equilibrium. We compute the real-time evolution starting with spatially homogeneous strong gauge fields, while the fermions are in vacuum. The idealized class of initial conditions is mot ivated by glasma flux tubes in the context of heavy-ion collisions. We focus on axial charge production at early times, where important aspects of the anomalous dynamics can be derived analytically. This is compared to real-time lattice simulations. Quark production at early times leading to anomalous charge generation is investigated using Wilson fermions. Our results indicate that coherent gauge fields can transiently produce significant amounts of axial charge density, while part of the induced charges persist to be present even well beyond characteristic decoherence times. The comparisons to analytic results provide stringent tests of real-time representations of the axial anomaly on the lattice.
While the partition function for QCD in a magnetic field $H$ has been calculated before within chiral perturbation theory up to two-loop order, our investigation relies on an alternative representation for the Bose functions which allows for a clear- cut expansion of thermodynamic quantities in the chiral limit. We first focus on the pion-pion interaction in the pressure and show that -- depending on magnetic field strength, temperature and pion mass -- it may be attractive or repulsive. We then analyze the thermodynamic properties in the chiral limit and provide explicit two-loop representations for the pressure in the weak magnetic field limit $|qH| ll T^2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا