ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure of a weakly magnetized hot and dense deconfined QCD matter in one-loop hard-thermal-loop perturbation theory

141   0   0.0 ( 0 )
 نشر من قبل Najmul Haque
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider our recently obtained general structure of two point (self-energy and propagator) functions of quarks and gluons in a nontrivial background like a heat bath and an external magnetic field. Based on this, here we have computed free energy and pressure of quarks and gluons for a magnetized hot and dense deconfined QCD matter in weak field approximation. For heat bath we have used hard thermal loop perturbation theory (HTLpt) in presence of finite chemical potential. For weak field approximations we have obtained the pressure of QCD matter, both with and without the high temperature expansion. The results with high $T$ expansions are completely analytic and gauge independent but depends on the renormalization scale in addition to the temperature, chemical potential and the external magnetic field. We also discuss the modification of QCD Debye mass of such matter for an arbitrary magnetic field. Analytic expressions for Debye mass are also obtained for both strong and weak field approximation. It is found to exhibit some interesting features depending upon the three different scales, i.e, the quark mass, temperature and the strength of the magnetic field. The various divergences appearing in the quark and gluon free energies are regulated through appropriate counter terms. In weak field approximation, the low temperature behavior of the pressure is found to strongly depend on the magnetic field than that at high temperature. We also discuss the specific problem with one-loop HTLpt associated with the over-counting of certain orders in coupling.



قيم البحث

اقرأ أيضاً

Considering the general structure of the two point functions of quarks and gluons, we compute the free energy and pressure of a strongly magnetized hot and dense QCD matter created in heavy-ion collisions. In presence of strong magnetic field we foun d that the deconfined QCD matter exhibits a paramagnetic nature. One gets different pressure in a direction parallel and perpendicular to magnetic field due to the magnetization acquired by the system. We obtain both longitudinal and transverse pressure, and magnetization of a hot deconfined QCD matter in presence of magnetic field. We have used hard thermal loop approximation (HTL) for heat bath. We obtained completely analytic expression for pressure and magnetization under certain approximation. Various divergences appearing in free energy are regulated using appropriate counter terms. The obtained anisotropic pressure may be useful for magnetohydrodynamics description of a hot and dense deconfined QCD matter produced in heavy-ion collisions.
We perform a detailed analysis of the predictions of resummed perturbation theory for the pressure and the second-, fourth-, and sixth-order diagonal quark number susceptibilities in a hot and dense quark-gluon plasma. First, we present an exact one- loop calculation of the equation of state within hard-thermal-loop perturbation theory (HTLpt) and compare it to a previous one-loop HTLpt calculation that employed an expansion in the ratios of thermal masses and the temperature. We find that this expansion converges reasonably fast. We then perform a resummation of the existing four-loop weak coupling expression for the pressure, motivated by dimensional reduction. Finally, we compare the exact one-loop HTLpt and resummed dimensional reduction results with state-of-the-art lattice calculations and a recent mass-expanded three-loop HTLpt calculation.
We consider weakly magnetized hot QED plasma comprising electrons and positrons. There are three distinct dispersive (longitudinal and two transverse) modes of a photon in a thermo-magnetic medium. At lowest order in coupling constant, photon is damp ed in this medium via Compton scattering and pair creation process. We evaluate the damping rate of hard photon by calculating the imaginary part of the each transverse dispersive modes in a thermo-magnetic QED medium. We note that one of the fermions in the loop of one-loop photon self-energy is considered as soft and the other one is hard. Considering the resummed fermion propagator in a weakly magnetized medium for the soft fermion and the Schwinger propagator for hard fermion, we calculate the soft contribution to the damping rate of hard photon. In weak field approximation the thermal and thermo-magnetic contributions to damping rate get separated out for each transverse dispersive mode. The total damping rate for each dispersive mode in presence of magnetic field is found to be reduced than that of the thermal one. This formalism can easily be extended to QCD plasma.
We apply the renormalization group optimized perturbation theory (RGOPT) to evaluate the quark contribution to the QCD pressure at finite temperatures and baryonic densities, at next-to-leading order (NLO). Our results are compared to NLO and state-o f-the-art higher orders of standard perturbative QCD (pQCD) and hard thermal loop perturbation theory (HTLpt). The RGOPT resummation provides a nonperturbative approximation, exhibiting a drastically better remnant renormalization scale dependence than pQCD, thanks to built-in renormalization group invariance consistency. At NLO, upon simply adding to the RGOPT-resummed quark contributions the purely perturbative NLO glue contribution, our results show a remarkable agreement with ab initio lattice simulation data for temperatures $0.25 lesssim T lesssim 1 , {rm GeV}$, with a remnant scale dependence drastically reduced as compared to HTLpt.
93 - Antonio Vairo 2018
We review our present knowledge of the Polyakov loop, the correlator of Polyakov loops and the singlet correlator in thermal QCD from the point of view of perturbation theory and lattice QCD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا