ترغب بنشر مسار تعليمي؟ اضغط هنا

An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models

154   0   0.0 ( 0 )
 نشر من قبل Xueqing Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The performance of fine-tuning pre-trained language models largely depends on the hyperparameter configuration. In this paper, we investigate the performance of modern hyperparameter optimization methods (HPO) on fine-tuning pre-trained language models. First, we study and report three HPO algorithms performances on fine-tuning two state-of-the-art language models on the GLUE dataset. We find that using the same time budget, HPO often fails to outperform grid search due to two reasons: insufficient time budget and overfitting. We propose two general strategies and an experimental procedure to systematically troubleshoot HPOs failure cases. By applying the procedure, we observe that HPO can succeed with more appropriate settings in the search space and time budget; however, in certain cases overfitting remains. Finally, we make suggestions for future work. Our implementation can be found in https://github.com/microsoft/FLAML/tree/main/flaml/nlp/.



قيم البحث

اقرأ أيضاً

Pre-trained language models (PrLM) have to carefully manage input units when training on a very large text with a vocabulary consisting of millions of words. Previous works have shown that incorporating span-level information over consecutive words i n pre-training could further improve the performance of PrLMs. However, given that span-level clues are introduced and fixed in pre-training, previous methods are time-consuming and lack of flexibility. To alleviate the inconvenience, this paper presents a novel span fine-tuning method for PrLMs, which facilitates the span setting to be adaptively determined by specific downstream tasks during the fine-tuning phase. In detail, any sentences processed by the PrLM will be segmented into multiple spans according to a pre-sampled dictionary. Then the segmentation information will be sent through a hierarchical CNN module together with the representation outputs of the PrLM and ultimately generate a span-enhanced representation. Experiments on GLUE benchmark show that the proposed span fine-tuning method significantly enhances the PrLM, and at the same time, offer more flexibility in an efficient way.
436 - Yusheng Su , Xu Han , Yankai Lin 2021
Fine-tuning pre-trained language models (PLMs) has demonstrated its effectiveness on various downstream NLP tasks recently. However, in many low-resource scenarios, the conventional fine-tuning strategies cannot sufficiently capture the important sem antic features for downstream tasks. To address this issue, we introduce a novel framework (named CSS-LM) to improve the fine-tuning phase of PLMs via contrastive semi-supervised learning. Specifically, given a specific task, we retrieve positive and negative instances from large-scale unlabeled corpora according to their domain-level and class-level semantic relatedness to the task. We then perform contrastive semi-supervised learning on both the retrieved unlabeled and original labeled instances to help PLMs capture crucial task-related semantic features. The experimental results show that CSS-LM achieves better results than the conventional fine-tuning strategy on a series of downstream tasks with few-shot settings, and outperforms the latest supervised contrastive fine-tuning strategies. Our datasets and source code will be available to provide more details.
Public security vulnerability reports (e.g., CVE reports) play an important role in the maintenance of computer and network systems. Security companies and administrators rely on information from these reports to prioritize tasks on developing and de ploying patches to their customers. Since these reports are unstructured texts, automatic information extraction (IE) can help scale up the processing by converting the unstructured reports to structured forms, e.g., software names a
Pre-trained language models (PLMs) have achieved great success in natural language processing. Most of PLMs follow the default setting of architecture hyper-parameters (e.g., the hidden dimension is a quarter of the intermediate dimension in feed-for ward sub-networks) in BERT (Devlin et al., 2019). Few studies have been conducted to explore the design of architecture hyper-parameters in BERT, especially for the more efficient PLMs with tiny sizes, which are essential for practical deployment on resource-constrained devices. In this paper, we adopt the one-shot Neural Architecture Search (NAS) to automatically search architecture hyper-parameters. Specifically, we carefully design the techniques of one-shot learning and the search space to provide an adaptive and efficient development way of tiny PLMs for various latency constraints. We name our method AutoTinyBERT and evaluate its effectiveness on the GLUE and SQuAD benchmarks. The extensive experiments show that our method outperforms both the SOTA search-based baseline (NAS-BERT) and the SOTA distillation-based methods (such as DistilBERT, TinyBERT, MiniLM and MobileBERT). In addition, based on the obtained architectures, we propose a more efficient development method that is even faster than the development of a single PLM.
Recently, fine-tuning pre-trained language models (e.g., multilingual BERT) to downstream cross-lingual tasks has shown promising results. However, the fine-tuning process inevitably changes the parameters of the pre-trained model and weakens its cro ss-lingual ability, which leads to sub-optimal performance. To alleviate this problem, we leverage continual learning to preserve the original cross-lingual ability of the pre-trained model when we fine-tune it to downstream tasks. The experimental result shows that our fine-tuning methods can better preserve the cross-lingual ability of the pre-trained model in a sentence retrieval task. Our methods also achieve better performance than other fine-tuning baselines on the zero-shot cross-lingual part-of-speech tagging and named entity recognition tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا