ﻻ يوجد ملخص باللغة العربية
Raman spectroscopy has been used to identify defective bonding in neon and silicon ion irradiated single crystals of 6H-SiC. Observable differences exist in the C-C bonding region corresponding to different defect structures for neon and silicon ion implantations. Raman spectra of ion irradiated SiC show less tensile strain than neutron irradiations, explained by a residual compressive stress caused by the swelling constrained by the undamaged substrate. Evidence of oxidation during high temperature ion implantation is observed as C-O and Si-O Raman signals. Annealing irradiated SiC while acquiring Raman spectra shows rapid recovery of Si-C bonding, but not a complete recovery of the unirradiated structure. Annealing irradiated SiC causes surface oxidation where unirradiated SiC does not oxidise. Comparisons are made to the apparent radiation resistance of diamond and silicon which have similar crystal structures, but are monatomic, leading to the suggestion that chemical defects are responsible for increased radiation damage in SiC.
Gallium selenide (GaSe) is a 2D material with a thickness-dependent gap, strong non-linear optical coefficients and uncommon interband optical selection rules, making it interesting for optoelectronic and spintronic applications. In this work, we mon
Ion-irradiated FeCr alloys are useful for understanding and predicting neutron-damage in the structural steels of future nuclear reactors. Previous studies have largely focused on the structure of irradiation-induced defects, probed by transmission e
We present a comprehensive structural characterization of ferromagnetic SiC single crystals induced by Ne ion irradiation. The ferromagnetism has been confirmed by electron spin resonance and possible transition metal impurities can be excluded to be
We show the evolution of Raman spectra with number of graphene layers on different substrates, SiO$_{2}$/Si and conducting indium tin oxide (ITO) plate. The G mode peak position and the intensity ratio of G and 2D bands depend on the preparation of s
We grow AlN/4H-SiC and AlN/6H-SiC heterostructures by physical vapor deposition and characterize the heterointerface with nanoscale resolution. Furthermore, we investigate the spatial stress and strain distribution in these heterostructures using con