ﻻ يوجد ملخص باللغة العربية
Ion-irradiated FeCr alloys are useful for understanding and predicting neutron-damage in the structural steels of future nuclear reactors. Previous studies have largely focused on the structure of irradiation-induced defects, probed by transmission electron microscopy (TEM), as well as changes in mechanical properties. Across these studies, a wide range of irradiation conditions has been employed on samples with different processing histories, which complicates the analysis of the relationship between defect structures and material properties. Furthermore, key properties, such as irradiation-induced changes in thermal transport and lattice strain, are little explored. Here we present a systematic study of Fe3Cr, Fe5Cr and Fe10Cr binary alloys implanted with 20 MeV Fe$^{3+}$ ions to nominal doses of 0.01 dpa and 0.1 dpa at room temperature. Nanoindentation, transient grating spectroscopy (TGS) and X-ray micro-beam Laue diffraction were used to study the changes in hardness, thermal diffusivity and strain in the material as a function of damage and Cr content. Our results suggest that Cr leads to an increased retention of irradiation-induced defects, causing substantial changes in hardness and lattice strain. However, thermal diffusivity varies little with increasing damage and instead degrades significantly with increasing Cr content in the material. We find significant lattice strains even in samples exposed to a nominal displacement damage of 0.01 dpa. The defect density predicted from the lattice strain measurements is significantly higher than that observed in previous TEM studies, suggesting that TEM may not fully capture the irradiation-induced defect population.
Understanding the mechanisms of plasticity in structural steels is essential for the operation of next-generation fusion reactors. Elemental composition, particularly the amount of Cr present, and irradiation can have separate and synergistic effects
The changing thermal conductivity of an irradiated material is among the principal design considerations for any nuclear reactor, but at present few models are capable of predicting these changes starting from an arbitrary atomistic model. Here we pr
Raman spectroscopy has been used to identify defective bonding in neon and silicon ion irradiated single crystals of 6H-SiC. Observable differences exist in the C-C bonding region corresponding to different defect structures for neon and silicon ion
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damag
It has been known for decades that thermal conductivity of insulating crystals becomes proportional to the inverse of temperature when the latter is comparable to or higher than the Debye temperature. This behavior has been understood as resulting fr