ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterising Ion-Irradiated FeCr: Hardness, Thermal Diffusivity and Lattice Strain

64   0   0.0 ( 0 )
 نشر من قبل Kay Song
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ion-irradiated FeCr alloys are useful for understanding and predicting neutron-damage in the structural steels of future nuclear reactors. Previous studies have largely focused on the structure of irradiation-induced defects, probed by transmission electron microscopy (TEM), as well as changes in mechanical properties. Across these studies, a wide range of irradiation conditions has been employed on samples with different processing histories, which complicates the analysis of the relationship between defect structures and material properties. Furthermore, key properties, such as irradiation-induced changes in thermal transport and lattice strain, are little explored. Here we present a systematic study of Fe3Cr, Fe5Cr and Fe10Cr binary alloys implanted with 20 MeV Fe$^{3+}$ ions to nominal doses of 0.01 dpa and 0.1 dpa at room temperature. Nanoindentation, transient grating spectroscopy (TGS) and X-ray micro-beam Laue diffraction were used to study the changes in hardness, thermal diffusivity and strain in the material as a function of damage and Cr content. Our results suggest that Cr leads to an increased retention of irradiation-induced defects, causing substantial changes in hardness and lattice strain. However, thermal diffusivity varies little with increasing damage and instead degrades significantly with increasing Cr content in the material. We find significant lattice strains even in samples exposed to a nominal displacement damage of 0.01 dpa. The defect density predicted from the lattice strain measurements is significantly higher than that observed in previous TEM studies, suggesting that TEM may not fully capture the irradiation-induced defect population.



قيم البحث

اقرأ أيضاً

Understanding the mechanisms of plasticity in structural steels is essential for the operation of next-generation fusion reactors. Elemental composition, particularly the amount of Cr present, and irradiation can have separate and synergistic effects on the mechanical properties of ferritic/martensitic steels. The study of ion-irradiated FeCr alloys is useful for gaining a mechanistic understanding of irradiation damage in steels. Previous studies of ion-irradiated FeCr did not clearly distinguish between the nucleation of dislocations to initiate plasticity, and their propagation through the material as plasticity progresses. In this study, Fe3Cr, Fe5Cr, and Fe10Cr were irradiated with 20 MeV Fe$^{3+}$ ions at room temperature to nominal doses of 0.01 dpa and 0.1 dpa. Nanoindentation was carried out with Berkovich and spherical indenter tips to study the nucleation of dislocations and their subsequent propagation. The presence of irradiation-induced defects reduced the theoretical shear stress and barrier for dislocation nucleation. The presence of Cr further enhanced this effect due to increased retention of irradiation defects. However, this combined effect is still small compared to dislocation nucleation from pre-existing sources such as Frank-Read sources and grain boundaries. The yield strength, an indicator of dislocation mobility, of FeCr increased with irradiation damage and Cr. The increased retention of irradiation defects due to the presence of Cr also further increased the yield strength. Reduced work hardening capacity was also observed following irradiation. The synergistic effects of Cr and irradiation damage in FeCr appear to be more important for the propagation of dislocations, rather than their nucleation.
The changing thermal conductivity of an irradiated material is among the principal design considerations for any nuclear reactor, but at present few models are capable of predicting these changes starting from an arbitrary atomistic model. Here we pr esent a simple model for computing the thermal diffusivity of tungsten, based on the conductivity of the perfect crystal and resistivity per Frenkel pair, and dividing a simulation into perfect and athermal regions statistically. This is applied to highly irradiated microstructures simulated with Molecular Dynamics. A comparison to experiment shows that simulations closely track observed thermal diffusivity over a range of doses from the dilute limit of a few Frenkel pairs to the high dose saturation limit at 3 displacements per atom (dpa).
Raman spectroscopy has been used to identify defective bonding in neon and silicon ion irradiated single crystals of 6H-SiC. Observable differences exist in the C-C bonding region corresponding to different defect structures for neon and silicon ion implantations. Raman spectra of ion irradiated SiC show less tensile strain than neutron irradiations, explained by a residual compressive stress caused by the swelling constrained by the undamaged substrate. Evidence of oxidation during high temperature ion implantation is observed as C-O and Si-O Raman signals. Annealing irradiated SiC while acquiring Raman spectra shows rapid recovery of Si-C bonding, but not a complete recovery of the unirradiated structure. Annealing irradiated SiC causes surface oxidation where unirradiated SiC does not oxidise. Comparisons are made to the apparent radiation resistance of diamond and silicon which have similar crystal structures, but are monatomic, leading to the suggestion that chemical defects are responsible for increased radiation damage in SiC.
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damag e doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.
It has been known for decades that thermal conductivity of insulating crystals becomes proportional to the inverse of temperature when the latter is comparable to or higher than the Debye temperature. This behavior has been understood as resulting fr om Umklapp scattering among phonons. We put under scrutiny the magnitude of the thermal diffusion constant in this regime and find that it does not fall below a threshold set by the square of sound velocity times the Planckian time ($tau_p=hbar/k_BT$). The conclusion, based on scrutinizing the ratio in cubic crystals with high thermal resistivity, appears to hold even in glasses where Umklapp events are not conceivable. Explaining this boundary, reminiscent of a recently-noticed limit for charge transport in metals, is a challenge to theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا