ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural and magnetic properties of irradiated SiC

285   0   0.0 ( 0 )
 نشر من قبل Shengqiang Zhou
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive structural characterization of ferromagnetic SiC single crystals induced by Ne ion irradiation. The ferromagnetism has been confirmed by electron spin resonance and possible transition metal impurities can be excluded to be the origin of the observed ferromagnetism. Using X-ray diffraction and Rutherford backscattering/channeling spectroscopy, we estimate the damage to the crystallinity of SiC which mutually influences the ferromagnetism in SiC.

قيم البحث

اقرأ أيضاً

The current manuscript highlights the preparation of NiFe2O4 nanoparticles by adopting sol-gel auto combustion route. The prime focus of this study is to investigate the impact of gamma irradiation on the microstructural, morphological, functional, o ptical and magnetic characteristics. The resulted NiFe2O4 products have been characterized employing numerous instrumental equipments such as FESEM, XRD, UV visible spectroscopy, FTIR and PPMS for a variety of gamma ray doses (0 kGy, 25 kGy and 100 kGy). FESEM micrographs illustrate the aggregation of ferrite nanoparticles in pristine NiFe2O4 product having an average particle size of 168 nm and the surface morphology is altered after exposure to gamma-irradiation. XRD spectra have been analyzed employing Rietveld method and the results of the XRD investigation reveal the desired phases (cubic spinel phases) of NiFe2O4 with observing other transitional phases. Several microstructural parameters such as bond length, bond angle, hopping length etc. have been determined from the analysis of Rietveld method. This study reports that the gamma irradiations demonstrate a great influence on optical bandgap energy and it varies from 1.80 and 1.89 eV evaluated via K M function. FTIR measurement depicts a proof for the persistence of Ni-O and Fe-O stretching vibrations within the respective products and thus indicating the successful development of NiFe2O4. The saturation magnetization (MS) of pristine Ni ferrite product is noticed to be 28.08 emug-1. A considerable increase in MS is observed in case of low gamma-dose (25 kGy) and a decrement nature is disclosed after the result of high dose of gamma irradiation (100kGy).
80 - J.H. Chen , Z. Y. Wei , E.K. Liu 2015
The crystal structures, martensitic structural transitions and magnetic properties of MnCo1-xFexSi (0 <= x <= 0.50) alloys were studied by differential scanning calorimetry (DSC), x-ray powder diffraction (XRD) and magnetic measurements. In high-temp erature paramagnetic state, the alloys undergo a martensitic structural transitions from the Ni2In-type hexagonal parent phase to the TiNiSi-type orthorhombic martensite. Both the martensitic transition temperature (TM) and Curie temperatures of martensite (T_C^M) decrease with increasing Fe content. The introduced Fe atoms establish ferromagnetic (FM) coupling between Fe-Mn atoms and destroy the double spiral antiferromagnetic (AFM) coupling in MnCoSi compound, resulting in a magnetic change in the martensite phase from a spiral AFM state to a FM state. For the alloys with x = 0.10, 0.15 and 0.20, a metamagnetic transition was observed in between the two magnetic states. A magnetostructural phase diagram of MnCo1-xFexSi (0 <= x <= 0.50) alloys was proposed.
Raman spectroscopy has been used to identify defective bonding in neon and silicon ion irradiated single crystals of 6H-SiC. Observable differences exist in the C-C bonding region corresponding to different defect structures for neon and silicon ion implantations. Raman spectra of ion irradiated SiC show less tensile strain than neutron irradiations, explained by a residual compressive stress caused by the swelling constrained by the undamaged substrate. Evidence of oxidation during high temperature ion implantation is observed as C-O and Si-O Raman signals. Annealing irradiated SiC while acquiring Raman spectra shows rapid recovery of Si-C bonding, but not a complete recovery of the unirradiated structure. Annealing irradiated SiC causes surface oxidation where unirradiated SiC does not oxidise. Comparisons are made to the apparent radiation resistance of diamond and silicon which have similar crystal structures, but are monatomic, leading to the suggestion that chemical defects are responsible for increased radiation damage in SiC.
GdCo$_5$ may be considered as two sublattices - one of Gd and one of Co - whose magnetizations are in antiparallel alignment, forming a ferrimagnet. Substitution of nickel in the cobalt sublattice of GdCo$_5$ has been investigated to gain insight int o how the magnetic properties of this prototype rare-earth/transition-metal magnet are affected by changes in the transition metal sublattice. Polycrystalline samples of GdCo$_{5-x}$Ni$_x$ for 0 $ leq x leq $ 5 were synthesized by arc melting. Structural characterization was carried out by powder x-ray diffraction and optical and scanning electron microscope imaging of metallographic slides, the latter revealing a low concentration of Gd$_2$(Co, Ni)$_7$ lamellae for $x leq 2.5$. Compensation - i.e. the cancellation of the opposing Gd and transition metal moments is observed for $1 leq x leq 3$ at a temperature which increases with Ni content; for larger $x$, no compensation is observed below 360 K. A peak in the coercivity is seen at $x approx 1$ at 10K coinciding with a minimum in the saturation magnetization. Density-functional theory calculations within the disordered local moment picture reproduce the dependence of the magnetization on Ni content and temperature. The calculations also show a peak in the magnetocrystalline anisotropy at similar Ni concentrations to the experimentally observed coercivity maximum.
Here we report the evolution of structural, magnetic and transport properties in MnBi$_{2-x}$Sb$_x$Te$_4$ (0$leq x leq$2) single crystals. MnSb$_2$Te$_4$, isostructural to MnBi$_2$Te$_4$, has the lattice parameters of textit{a}=4.2445(3)$AA$ and text it{c}=40.869(5)$AA$, respectively. With increasing Sb content in MnBi$_{2-x}$Sb$_x$Te$_4$, the textit{a}-lattice decreases linearly following the Vegards law while the textit{c}-lattice shows little compositional dependence. The textit{a}-lattice contraction occurs by reducing Mn-Te-Mn bond angle while Mn-Te bond length remains nearly constant. The anisotropic magnetic properties suggest an antiferromagnetic order below T$_N$=19,K for MnSb$_2$Te$_4$ with the magnetic moments aligned along the crystallographic textit{c}-axis. The antiferromagnetic ordering temperature slightly decreases from 24,K for MnBi$_2$Te$_4$ to 19,K for MnSb$_2$Te$_4$. More dramatic change was observed for the critical magnetic fields required for the spin-flop transition and moment saturation. With increasing Sb content, both critical fields decrease and in MnSb$_2$Te$_4$ a small field of 3,kOe is enough to saturate the moment. In high magnetic fields, the saturation moment shows significant suppression from 3.56$mu_B$/Mn for MnBi$_2$Te$_4$ to 1.57$mu_B$/Mn for MnSb$_2$Te$_4$. Data analyses suggest that both the interlayer magnetic interaction and single ion anisotropy decrease with increasing Sb content. The partial substitution of Bi by Sb also dramatically affects the transport properties. A crossover from n-type to p-type conducting behavior is observed around x=0.63. Our results show close correlation between structural, magnetic and transport properties in MnBi$_{2-x}$Sb$_x$Te$_4$ and that partial substitution of Bi by Sb is an effective approach to fine tuning both the magnetism and transport properties of MnBi$_{2-x}$Sb$_x$Te$_4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا