ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetically induced elastic deformations of magnetic gels and elastomers containing particles of mixed size

331   0   0.0 ( 0 )
 نشر من قبل Lukas Fischer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Soft elastic composite materials can serve as actuators when they transform changes in external fields into mechanical deformation. Here, we address the corresponding deformational behavior of magnetic gels and elastomers, consisting of magnetizable colloidal particles in a soft polymeric matrix and exposed to external magnetic fields. Since many practical realizations of such materials involve particulate inclusions of polydisperse size distributions, we concentrate on the effect that mixed particle sizes have on the overall deformational response. To perform a systematic study, our focus is on binary size distributions. We systematically vary the fraction of larger particles relative to smaller ones and characterize the resulting magnetostrictive behavior. The consequences for systems of various different spatial particle arrangements and different degrees of compressibility of the elastic matrix are evaluated. In parts, we observe a qualitative change in the overall response for selected systems of mixed particle sizes. Specifically, overall changes in volume and relative elongations or contractions in response to an induced magnetization can be reversed into the opposite types of behavior. Our results should apply to the characteristics of other soft elastic composite materials like electrorheological gels and elastomers when exposed to external electric fields as well. Overall, we hope to stimulate the further investigation on the purposeful use of mixed particle sizes as a means to design tailored requested material behavior.



قيم البحث

اقرأ أيضاً

Magnetic gels and elastomers are promising candidates to construct reversibly excitable soft actuators, triggered from outside by magnetic fields. These magnetic fields induce or alter the magnetic interactions between discrete rigid particles embedd ed in a soft elastic polymeric matrix, leading to overall deformations. It is a major challenge in theory to correctly predict from the discrete particle configuration the type of deformation resulting for a finite-sized system. Considering an elastic sphere, we here present such an approach. The method is in principle exact, at least within the framework of linear elasticity theory and for large enough interparticle distances. Different particle arrangements are considered. We find, for instance, that regular simple cubic configurations show elongation of the sphere along the magnetization if oriented along a face or space diagonal of the cubic unit cell. Contrariwise, with the magnetization along the edge of the cubic unit cell, they contract. The opposite is true in this geometry for body- and face-centered configurations. Remarkably, for the latter configurations but the magnetization along a face or space diagonal of the unit cell, contraction was observed to revert to expansion with decreasing Poisson ratio of the elastic material. Randomized configurations were considered as well. They show a tendency of elongating the sphere along the magnetization, which is more pronounced for compressible systems. Our results can be tested against actual experiments for spherical samples. Moreover, our approach shall support the search of optimal particle distributions for a maximized effect of actuation.
The description of the collective magnetorheological effect induced by magnetic field in magnetoactive elastomers is proposed. The condition of consistency is used between magnetic and mechanic momenta of forces exerted on magnetically uniaxial ferro magnetic particles in elastomer at their magnetization. The study shows that even in the case of small concentration of particles, the value of magnetically-induced shear can be anomalously large, reaching up to tens of percent. The deformation of magnetoactive elastomer can evolve critically, as a second-order phase transition, if magnetic field is aligned along the easy axis of particles.
A hydrostatically stressed soft elastic film circumvents the imposed constraint by undergoing a morphological instability, the wavelength of which is dictated by the minimization of the surface and the elastic strain energies of the film. While for a single film, the wavelength is entirely dependent on its thickness, a co-operative energy minimization dictates that the wavelength depends on both the elastic moduli and thicknesses of two contacting films. The wavelength can also depend on the material properties of a film if its surface tension has a pronounced effect in comparison to its elasticity. When such a confined film is subjected to a continually increasing normal displacement, the morphological patterns evolve into cracks, which, in turn, govern the adhesive fracture behavior of the interface. While, in general, the thickness provides the relevant length scale underlying the well-known Griffith-Kendall criterion of debonding of a rigid disc from a confined film, it is modified non-trivially by the elasto-capillary number for an ultra-soft film. Depending upon the degree of confinement and the spatial distribution of external stress, various analogs of the canonical instability patterns in liquid systems can also be reproduced with thin confined elastic films.
We report detailed theoretical investigations of the micro-mechanics and bulk elastic properties of composites consisting of randomly distributed stiff fibers embedded in an elastic matrix in two and three dimensions. Recent experiments published in Physical Review Letters [102, 188303 (2009)] have suggested that the inclusion of stiff microtubules in a softer, nearly incompressible biopolymer matrix can lead to emergent compressibility. This can be understood in terms of the enhancement of the compressibility of the composite relative to its shear compliance as a result of the addition of stiff rod-like inclusions. We show that the Poissons ratio $ u$ of such a composite evolves with increasing rod density towards a particular value, or {em fixed point}, independent of the material properties of the matrix, so long as it has a finite initial compressibility. This fixed point is $ u=1/4$ in three dimensions and $ u=1/3$ in two dimensions. Our results suggest an important role for stiff filaments such as microtubules and stress fibers in cell mechanics. At the same time, our work has a wider elasticity context, with potential applications to composite elastic media with a wide separation of scales in stiffness of its constituents such as carbon nanotube-polymer composites, which have been shown to have highly tunable mechanics.
Elastomers that can sustain large reversible strain are essential components for stretchable electronics. The stretchability and mechanical robustness of unfilled elastomers can be enhanced by introducing easier-to-break cross-links, e.g. through the multi-network structure, which also causes stress-strain hysteresis indicating strain-induced damage. However, it remains unclear whether cross-link breakage follows a predictable pattern that can be used to understand the damage evolution with strain. Using coarse-grained molecular dynamics and topology analyses of the polymer network, we find that bond-breaking events are controlled by the evolution of the global shortest path length between well-separated cross-links, which is both anisotropic and hysteretic with strain. These findings establish an explicit connection between the molecular structure and the macroscopic mechanical behavior of elastomers, thereby providing guidelines for designing mechanically robust soft materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا