ترغب بنشر مسار تعليمي؟ اضغط هنا

Adhesion Induced Instabilities and Pattern Formation in Thin Films of Elastomers and Gels

104   0   0.0 ( 0 )
 نشر من قبل Manoj Chaudhury
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A hydrostatically stressed soft elastic film circumvents the imposed constraint by undergoing a morphological instability, the wavelength of which is dictated by the minimization of the surface and the elastic strain energies of the film. While for a single film, the wavelength is entirely dependent on its thickness, a co-operative energy minimization dictates that the wavelength depends on both the elastic moduli and thicknesses of two contacting films. The wavelength can also depend on the material properties of a film if its surface tension has a pronounced effect in comparison to its elasticity. When such a confined film is subjected to a continually increasing normal displacement, the morphological patterns evolve into cracks, which, in turn, govern the adhesive fracture behavior of the interface. While, in general, the thickness provides the relevant length scale underlying the well-known Griffith-Kendall criterion of debonding of a rigid disc from a confined film, it is modified non-trivially by the elasto-capillary number for an ultra-soft film. Depending upon the degree of confinement and the spatial distribution of external stress, various analogs of the canonical instability patterns in liquid systems can also be reproduced with thin confined elastic films.

قيم البحث

اقرأ أيضاً

In this study, thin elastic films supported on a rigid substrate are brought into contact with a spherical glass indenter. Upon contact, adhesive fingers emerge at the periphery of the contact patch with a characteristic wavelength. Elastic films are also pre-strained along one axis before initiation of contact, causing the fingering pattern to become anisotropic and align with the axis along which the strain was applied. This transition from isotropic to anisotropic patterning is characterized quantitatively and a simple model is developed to understand the origin of the anisotropy.
Soft elastic composite materials can serve as actuators when they transform changes in external fields into mechanical deformation. Here, we address the corresponding deformational behavior of magnetic gels and elastomers, consisting of magnetizable colloidal particles in a soft polymeric matrix and exposed to external magnetic fields. Since many practical realizations of such materials involve particulate inclusions of polydisperse size distributions, we concentrate on the effect that mixed particle sizes have on the overall deformational response. To perform a systematic study, our focus is on binary size distributions. We systematically vary the fraction of larger particles relative to smaller ones and characterize the resulting magnetostrictive behavior. The consequences for systems of various different spatial particle arrangements and different degrees of compressibility of the elastic matrix are evaluated. In parts, we observe a qualitative change in the overall response for selected systems of mixed particle sizes. Specifically, overall changes in volume and relative elongations or contractions in response to an induced magnetization can be reversed into the opposite types of behavior. Our results should apply to the characteristics of other soft elastic composite materials like electrorheological gels and elastomers when exposed to external electric fields as well. Overall, we hope to stimulate the further investigation on the purposeful use of mixed particle sizes as a means to design tailored requested material behavior.
When calcium salts are added to an aqueous solution of polysaccharide pectin, ionic cross-links form between pectin chains, giving rise to a gel network in dilute solution. In this work, dynamic light scattering (DLS) is employed to study the microsc opic dynamics of the fractal aggregates (flocs) that constitute the gels, while rheological measurements are performed to study the process of gel rupture. As calcium salt concentration is increased, DLS experiments reveal that the polydispersities of the flocs increase simultaneously with the characteristic relaxation times of the gel network. Above a critical salt concentration, the flocs become interlinked to form a reaction-limited fractal gel network. Rheological studies demonstrate that the limits of the linear rheological response and the critical stresses required to rupture these networks both decrease with increase in salt concentration. These features indicate that the ion-mediated pectin gels studied here lie in a `strong link regime that is characterised by inter-floc links that are stronger than intra-floc links. A scaling analysis of the experimental data presented here demonstrates that the elasticities of the individual fractal flocs exhibit power-law dependences on the added salt concentration. We conclude that when pectin and salt concentrations are both increased, the number of fractal flocs of pectin increases simultaneously with the density of crosslinks, giving rise to very large values of the bulk elastic modulus.
Magnetic gels and elastomers are promising candidates to construct reversibly excitable soft actuators, triggered from outside by magnetic fields. These magnetic fields induce or alter the magnetic interactions between discrete rigid particles embedd ed in a soft elastic polymeric matrix, leading to overall deformations. It is a major challenge in theory to correctly predict from the discrete particle configuration the type of deformation resulting for a finite-sized system. Considering an elastic sphere, we here present such an approach. The method is in principle exact, at least within the framework of linear elasticity theory and for large enough interparticle distances. Different particle arrangements are considered. We find, for instance, that regular simple cubic configurations show elongation of the sphere along the magnetization if oriented along a face or space diagonal of the cubic unit cell. Contrariwise, with the magnetization along the edge of the cubic unit cell, they contract. The opposite is true in this geometry for body- and face-centered configurations. Remarkably, for the latter configurations but the magnetization along a face or space diagonal of the unit cell, contraction was observed to revert to expansion with decreasing Poisson ratio of the elastic material. Randomized configurations were considered as well. They show a tendency of elongating the sphere along the magnetization, which is more pronounced for compressible systems. Our results can be tested against actual experiments for spherical samples. Moreover, our approach shall support the search of optimal particle distributions for a maximized effect of actuation.
We sandwich a colloidal gel between two parallel plates and induce a radial flow by lifting the upper plate at a constant velocity. Two distinct scenarios result from such a tensile test: ($i$) stable flows during which the gel undergoes a tensile de formation without yielding, and ($ii$) unstable flows characterized by the radial growth of air fingers into the gel. We show that the unstable regime occurs beyond a critical energy input, independent of the gels macroscopic yield stress. This implies a local fluidization of the gel at the tip of the growing fingers and results in the most unstable wavelength of the patterns exhibiting the characteristic scalings of the classical viscous fingering instability. Our work provides a quantitative criterion for the onset of fingering in colloidal gels based on a local shear-induced yielding, in agreement with the delayed failure framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا