ﻻ يوجد ملخص باللغة العربية
A numerical method, suitable for the simulation of the time evolution of quantum spin models of arbitrary lattice dimension, is presented. The method combines sampling of the Wigner function with evolution equations obtained from the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. Going to higher orders of the BBGKY hierarchy allows for a systematic refinement of the method. Quantum correlations are treated through both, the Wigner function sampling and the BBGKY evolution, bringing about highly accurate estimates of correlation functions. The method is particularly suitable for long-range interacting systems, and we demonstrate its power by comparing with exact results as well as other numerical methods. As an application we compute spin squeezing in a two-dimensional lattice with power-law interactions and a transverse field, which should be accessible in future ion trap experiments.
Atomistic simulations of thermodynamic properties of magnetic materials rely on an accurate modelling of magnetic interactions and an efficient sampling of the high-dimensional spin space. Recent years have seen significant progress with a clear tren
A polymer chain pinned in space exerts a fluctuating force on the pin point in thermal equilibrium. The average of such fluctuating force is well understood from statistical mechanics as an entropic force, but little is known about the underlying for
We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of t
We show that the change of the fluctuation spectrum near the quantum critical point (QCP) may result in the continuous change of critical exponents with temperature due to the increase in the effective dimensionality upon approach to QCP. The latter
We introduce a Maxwell demon which generates many-body-entanglement robustly against thermal fluctuations, which allows us to obtain quantum advantage. Adopting the protocol of the voter model used for opinion dynamics approaching consensus, the demo