ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical phenomena of a hybrid phase transition in cluster merging dynamics

105   0   0.0 ( 0 )
 نشر من قبل KwangJong Choi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, a hybrid percolation transitions (HPT) that exhibits both a discontinuous transition and critical behavior at the same transition point has been observed in diverse complex systems. In spite of considerable effort to develop the theory of HPT, it is still incomplete, particularly when the transition is induced by cluster merging dynamics. Here, we aim to develop a theoretical framework of the HPT induced by such dynamics. We find that two correlation-length exponents are necessary for characterizing the giant cluster and finite clusters, respectively. Finite-size scaling method for the HPT is also introduced. The conventional formula of the fractal dimension in terms of the critical exponents is not valid. Neither the giant nor finite clusters are fractals but they have fractal boundaries.



قيم البحث

اقرأ أيضاً

We show that the change of the fluctuation spectrum near the quantum critical point (QCP) may result in the continuous change of critical exponents with temperature due to the increase in the effective dimensionality upon approach to QCP. The latter reflects the crossover from thermal fluctuations white noise mode to the quantum fluctuations regime. We investigate the critical dynamics of an exemplary system obeying the Bose-Einstein employing the Keldysh-Schwinger approach and develop the renormalization group technique that enables us to obtain analytical expressions for temperature dependencies of critical exponents.
115 - Jiarul Midya , Subir K. Das 2016
Via a combination of molecular dynamics (MD) simulations and finite-size scaling (FSS) analysis, we study dynamic critical phenomena for the vapor-liquid transition in a three dimensional Lennard-Jones system. The phase behavior of the model, includi ng the critical point, have been obtained via the Monte Carlo simulations. The transport properties, viz., the bulk viscosity and the thermal conductivity, are calculated via the Green-Kubo relations, by taking inputs from the MD simulations in the microcanonical ensemble. The critical singularities of these quantities are estimated via the FSS method. The results thus obtained are in nice agreement with the predictions of the dynamic renormalization group and mode-coupling theories.
In finite-size scaling analyses of Monte Carlo simulations of second-order phase transitions one often needs an extended temperature range around the critical point. By combining the parallel tempering algorithm with cluster updates and an adaptive r outine to find the temperature window of interest, we introduce a flexible and powerful method for systematic investigations of critical phenomena. As a result, we gain one to two orders of magnitude in the performance for 2D and 3D Ising models in comparison with the recently proposed Wang-Landau recursion for cluster algorithms based on the multibondic algorithm, which is already a great improvement over the standard multicanonical variant.
First order phase transitions occur discretely from one state to another, however they often display continuous behavior. To understand this nature, it is essential to probe how the emergent phase nucleates, interacts and evolves with the initial pha se across the transition at microscopic scales. Here, the prototypical first-order magneto-structural transition in FeRh is used to investigate these phenomena. We find that the temperature evolution of the final phase exhibits critical behavior. Furthermore, a difference between the structure and magnetic transition temperatures reveals a novel intermediate phase created from the interface between the initial and nucleated final states. This emergent phase, characterized by its lack of spin order due to the competition between the antiferromagnetic and ferromagnetic interactions, leads to suppression of the dynamic aspect of the transition, generating a static mixed-phase-morphology. Understanding and controlling the transition process at this spatial scale is critical to optimizing functional device capabilities.
The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researche rs have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of these critical phenomena, namely structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. We also discuss systems where a network and interacting agents on it influence each other. We overview a wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, k-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks. We also discuss strong finite size effects in these systems and highlight open problems and perspectives.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا