ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation Campaign of HPK Prototype LGAD sensors for the High-Granularity Timing Detector (HGTD)

327   0   0.0 ( 0 )
 نشر من قبل Xin Shi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the results of a radiation campaign with neutrons and protons of Low Gain Avalanche Detectors (LGAD) produced by Hamamatsu (HPK) as prototypes for the High-Granularity Timing Detector (HGTD) in ATLAS. Sensors with an active thickness of 50~$mu$m were irradiated in steps of roughly 2$times$ up to a fluence of $3times10^{15}~mathrm{n_{eq}cm^{-2}}$. As a function of the fluence, the collected charge and time resolution of the irradiated sensors will be reported for operation at $-30^{circ}$.

قيم البحث

اقرأ أيضاً

The High-Granularity Timing Detector is a detector proposed for the ATLAS Phase II upgrade. The detector, based on the Low-Gain Avalanche Detector (LGAD) technology will cover the pseudo-rapidity region of $2.4<|eta|<4.0$ with two end caps on each si de and a total area of 6.4 $m^2$. The timing performance can be improved by implanting an internal gain layer that can produce signal with a fast rising edge, which improve significantly the signal-to-noise ratio. The required average timing resolution per track for a minimum-ionising particle is 30 ps at the start and 50 ps at the end of the HL-LHC operation. This is achieved with several layers of LGAD. The innermost region of the detector would accumulate a 1 MeV-neutron equivalent fluence up to $2.5 times 10^{15} cm^{-2}$ before being replaced during the scheduled shutdowns. The addition of this new detector is expected to play an important role in the mitigation of high pile-up at the HL-LHC. The layout and performance of the vario
146 - Yuhang Tan , Tao Yang , Suyu Xiao 2020
We study the radiation effects of the Low Gain Avalanche Detector (LGAD) sensors developed by the Institute of High Energy Physics (IHEP) and the Novel Device Laboratory (NDL) of Beijing Normal University in China. These new sensors have been irradia ted at the China Institute of Atomic Energy (CIAE) using 100 MeV proton beam with five different fluences from 7$times10^{14}$ $n_{eq}/cm^2$ up to 4.5$times10^{15}$ $n_{eq}/cm^2$. The result shows the effective doping concentration in the gain layer decreases with the increase of irradiation fluence, as expected by the acceptor removal mechanism. By comparing data and model gives the acceptor removal coefficient $c_{A}$ = $(6.07pm0.70)times10^{-16}~cm^2$, which indicates the NDL sensor has fairly good radiation resistance.
221 - C. Agapopoulou , S. Blin , A. Blot 2020
For the High-Luminosity phase of LHC, the ATLAS experiment is proposing the addition of a High Granularity Timing Detector (HGTD) in the forward region to mitigate the effects of the increased pile-up. The chosen detection technology is Low Gain Aval anche Detector (LGAD) silicon sensors that can provide an excellent timing resolution below 50 ps. The front-end read-out ASIC must maintain the performance of the sensor, while keeping low power consumption. This paper presents the results on the first prototype of a front-end ASIC, named ALTIROC0, which contains the analog stages (preamplifier and discriminator) of the read-out chip. The ASIC was characterised both alone and as part of a module with a 2$times$2 LGAD array of 1.1$times$1.1 mm$^2$ pads bump-bonded to it. The various contributions of the electronics to the time resolution were investigated in test-bench measurements with a calibration setup. Both when the ASIC is alone or with a bump-bonded sensor, the jitter of the ASIC is better than 20 ps for an injected charge of 10 fC. The time walk effect that arises from the different response of the preamplifier for various injected charges can be corrected up to 10 ps using a Time Over Threshold measurement. The combined performance of the ASIC and the LGAD sensor, which was measured during a beam test campaign in October 2018 with pions of 120 GeV energy at the CERN SPS, is around 40 ps for all measured modules. All tested modules show good efficiency and time resolution uniformity.
For the high luminosity upgrade of the LHC at CERN, ATLAS is considering the addition of a High Granularity Timing Detector (HGTD) in front of the end cap and forward calorimeters at |z| = 3.5 m and covering the region 2.4 < |{eta}| < 4 to help reduc ing the effect of pile-up. The chosen sensors are arrays of 50 {mu}m thin Low Gain Avalanche Detectors (LGAD). This paper presents results on single LGAD sensors with a surface area of 1.3x1.3 mm2 and arrays with 2x2 pads with a surface area of 2x2 mm^2 or 3x3 mm^2 each and different implant doses of the p+ multiplication layer. They are obtained from data collected during a beam test campaign in Autumn 2016 with a pion beam of 120 GeV energy at the CERN SPS. In addition to several quantities measured inclusively for each pad, the gain, efficiency and time resolution have been estimated as a function of the position of the incident particle inside the pad by using a beam telescope with a position resolution of few {mu}m. Different methods to measure the time resolution are compared, yielding consistent results. The sensors with a surface area of 1.3x1.3 mm^2 have a time resolution of about 40 ps for a gain of 20 and of about 27 ps for a gain of 50 and fulfill the HGTD requirements. Larger sensors have, as expected, a degraded time resolution. All sensors show very good efficiency and time resolution uniformity.
In this paper, we report on the radiation resistance of 50-micron thick LGAD detectors manufactured at the Fondazione Bruno Kessler employing several different doping combinations of the gain layer. LGAD detectors with gain layer doping of Boron, Bor on low-diffusion, Gallium, Carbonated Boron and Carbonated Gallium have been designed and successfully produced. These sensors have been exposed to neutron fluences up to $phi_n sim 3 cdot 10^{16}; n/cm^2$ and to proton fluences up to $phi_p sim 9cdot10^{15}; p/cm^2$ to test their radiation resistance. The experimental results show that Gallium-doped LGADs are more heavily affected by initial acceptor removal than Boron-doped LGAD, while the presence of Carbon reduces initial acceptor removal both for Gallium and Boron doping. Boron low-diffusion shows a higher radiation resistance than that of standard Boron implant, indicating a dependence of the initial acceptor removal mechanism upon the implant width. This study also demonstrates that proton irradiation is at least twice more effective in producing initial acceptor removal, making proton irradiation far more damaging than neutron irradiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا