ﻻ يوجد ملخص باللغة العربية
For the High-Luminosity phase of LHC, the ATLAS experiment is proposing the addition of a High Granularity Timing Detector (HGTD) in the forward region to mitigate the effects of the increased pile-up. The chosen detection technology is Low Gain Avalanche Detector (LGAD) silicon sensors that can provide an excellent timing resolution below 50 ps. The front-end read-out ASIC must maintain the performance of the sensor, while keeping low power consumption. This paper presents the results on the first prototype of a front-end ASIC, named ALTIROC0, which contains the analog stages (preamplifier and discriminator) of the read-out chip. The ASIC was characterised both alone and as part of a module with a 2$times$2 LGAD array of 1.1$times$1.1 mm$^2$ pads bump-bonded to it. The various contributions of the electronics to the time resolution were investigated in test-bench measurements with a calibration setup. Both when the ASIC is alone or with a bump-bonded sensor, the jitter of the ASIC is better than 20 ps for an injected charge of 10 fC. The time walk effect that arises from the different response of the preamplifier for various injected charges can be corrected up to 10 ps using a Time Over Threshold measurement. The combined performance of the ASIC and the LGAD sensor, which was measured during a beam test campaign in October 2018 with pions of 120 GeV energy at the CERN SPS, is around 40 ps for all measured modules. All tested modules show good efficiency and time resolution uniformity.
The High-Granularity Timing Detector is a detector proposed for the ATLAS Phase II upgrade. The detector, based on the Low-Gain Avalanche Detector (LGAD) technology will cover the pseudo-rapidity region of $2.4<|eta|<4.0$ with two end caps on each si
The analog front-end for the Low Gain Avalanche Detector (LGAD) based precision timing application in the CMS Endcap Timing Layer (ETL) has been prototyped in a 65 nm CMOS mini-ASIC named ETROC0. Serving as the very first prototype of ETL readout chi
We report on the development of a front-end ASIC for silicon-strip detectors of the J-PARC Muon g-2/EDM experiment. This experiment aims to measure the muon anomalous magnetic moment and electric dipole moment precisely to explore new physics beyond
Compact multi-channel radiation detectors rely on low noise front-end application specific integrated circuits (ASICs) to achieve high spectral resolution. Here, a new ASIC developed to readout virtual Frisch-grid cadmium zinc telluride (VFG CZT) det
The present article introduces a novel ASIC architecture, designed in the context of the ATLAS Tile Calorimeter upgrade program for the High-Luminosity phase of the Large Hadron Collider at CERN. The architecture is based on radiation-tolerant 130 nm