ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser spot measurement using cost-affordable devices

313   0   0.0 ( 0 )
 نشر من قبل Miguel Bonnett Del Alamo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have designed and tested an automated simple setup for quickly measuring the profile and spot size of a Gaussian laser beam using three cost-affordable light sensors. Two profiling techniques were implemented: imaging for the CMOS 2D array (webcam) and scanning knife-edge-like using a single photodiode and an LDR. The methods and sensors were compared to determine their accuracy using lasers of two different wavelengths and technologies. We verify that it is possible to use a low-cost webcam to determine the profile of a laser with 1% uncertainty on the beam waist, 1.5% error on the waistline position, and less than 3% error in determining the minimum spot radius. The photodiode measurement is the most stable since it is not affected by the change in laser intensity. In addition, we show that it is possible to use an inexpensive LDR sensor to estimate the laser spot size with an 11% error.



قيم البحث

اقرأ أيضاً

We report the design and characterization of an optical shutter based on a piezoelectric cantilever. Compared to conventional electro-magnetic shutters, the device is intrinsically low power and acoustically quiet. The cantilever position is controll ed by a high-voltage op-amp circuit for easy tuning of the range of travel, and mechanical slew rate, which enables a factor of 30 reduction in mechanical noise compared to a rapidly switched device. We achieve shuttering rise and fall times of 11 $mu$s, corresponding to mechanical slew rates of 1.3 $textrm{ ms}^{-1}$, with an timing jitter of less than 1 $mu$s. When used to create optical pulses, we achieve minimum pulse durations of 250 $mu$s. The reliability of the shutter was investigated by operating continuously for one week at 10 Hz switching rate. After this period, neither the shutter delay or actuation speed had changed by a notable amount. We also show that the high-voltage electronics can be easily configured as a versatile low-noise, high-bandwidth piezo driver, well-suited to applications in laser frequency control.
We report long-term laser frequency stabilization using only the target laser and a pair of 5 m fiber interferometers, one as a frequency reference and the second as a sensitive thermometer to stabilize the frequency reference. When used to stabilize a distributed feedback laser at 795 nm, the frequency Allan deviation at 1000 s drops from 5.6*10^{-8} to 6.9*10^{-10}. The performance equals that of an offset lock employing a second, atom-stabilized laser in the temperature control.
We report an original method allowing to recover the temporal profile of any kind of soft X-ray laser pulse in single-shot operation. We irradiated a soft X-ray multilayer mirror with an intense infrared femtosecond laser pulse in a traveling wave ge ometry and took advantage of the sudden reflectivity drop of the mirror to reconstruct the temporal profile of the soft X-ray pulse. We inferred a pulse shape with a duration of a few ps in good agreement with numerical calculations and experimental work.
This paper shows a novel method to precisely measure the laser power using an optomechanical system. By measuring a mirror displacement caused by the reflection of an amplitude modulated laser beam, the number of photons in the incident continuous-wa ve laser can be precisely measured. We have demonstrated this principle by means of a prototype experiment uses a suspended 25 mg mirror as an mechanical oscillator coupled with the radiation pressure and a Michelson interferometer as the displacement sensor. A measurement of the laser power with an uncertainty of less than one percent (1 sigma) is achievable.
Optical cavities provide high sensitivity to dispersion since their resonance frequencies depend on the index of refraction. We present a direct, broadband, and accurate measurement of the modes of a high finesse cavity using an optical frequency com b and a mechanical Fourier transform spectrometer with a kHz-level resolution. We characterize 16000 cavity modes spanning 16 THz of bandwidth in terms of center frequency, linewidth, and amplitude. We retrieve the group delay dispersion of the cavity mirror coatings and pure N${_2}$ with 0.1 fs${^2}$ precision and 1 fs${^2}$ accuracy, as well as the refractivity of the 3{ u}1+{ u}3 absorption band of CO${_2}$ with 5 x 10${^{-12}}$ precision. This opens up for broadband refractive index metrology and calibration-free spectroscopy of entire molecular bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا