ﻻ يوجد ملخص باللغة العربية
We report long-term laser frequency stabilization using only the target laser and a pair of 5 m fiber interferometers, one as a frequency reference and the second as a sensitive thermometer to stabilize the frequency reference. When used to stabilize a distributed feedback laser at 795 nm, the frequency Allan deviation at 1000 s drops from 5.6*10^{-8} to 6.9*10^{-10}. The performance equals that of an offset lock employing a second, atom-stabilized laser in the temperature control.
We report on the realization of a novel fiber-optic radio frequency (RF) transfer scheme with the bidirectional frequency division multiplexing (FDM) dissemination technique. Here, the proper bidirectional frequency map used in the forward and backwa
Terrestrial laser interferometers for gravitational-wave detection made the landmark first detection of gravitational waves in 2015. We provide an overview of the history of how these laser interferometers prevailed as the most promising technology i
Optical frequency stabilization is a critical component for precision scientific systems including quantum sensing, precision metrology, and atomic timekeeping. Ultra-high quality factor photonic integrated optical resonators are a prime candidate fo
Optical fibers have been recognized as one of the most promising host material for high phase coherence optical frequency transfer over thousands of kilometers. In the pioneering work, the active phase noise cancellation (ANC) technique has been wide
We build a resonant fiber optic gyro based on Kagome hollow-core fiber. A semi-bulk cavity architecture based on a 18-m-long Kagome fiber permits to achieve a cavity finesse of 23 with a resonance linewidth of 700 kHz. An optimized Pound-Drever-Hall