ﻻ يوجد ملخص باللغة العربية
We analyze a task in which classical and quantum messages are simultaneously communicated via a noisy quantum channel, assisted with a limited amount of shared entanglement. We derive the direct and converse bounds for the one-shot capacity region. The bounds are represented in terms of the smooth conditional entropies and the error tolerance, and coincide in the asymptotic limit of infinitely many uses of the channel. The direct and converse bounds for various communication tasks are obtained as corollaries, both for one-shot and asymptotic scenarios. The proof is based on the randomized partial decoupling theorem, which is a generalization of the decoupling theorem. Thereby we provide a unified decoupling approach to the one-shot quantum channel coding, by fully incorporating classical communication, quantum communication and shared entanglement.
We introduce a task that we call partial decoupling, in which a bipartite quantum state is transformed by a unitary operation on one of the two subsystems and then is subject to the action of a quantum channel. We assume that the subsystem is decompo
We introduce a probabilistic version of the one-shot quantum dense coding protocol in both two- and multiport scenarios, and refer to it as conclusive quantum dense coding. Specifically, we analyze the corresponding capacities of two-qubit, two-qutri
The capacity of noisy quantum channels characterizes the highest rate at which information can be reliably transmitted and it is therefore of practical as well as fundamental importance. Capacities of classical channels are computed using alternating
Communication over a noisy channel is often conducted in a setting in which different input symbols to the channel incur a certain cost. For example, for bosonic quantum channels, the cost associated with an input state is the number of photons, whic
In this work, we prove a novel one-shot multi-sender decoupling theorem generalising Dupuis result. We start off with a multipartite quantum state, say on A1 A2 R, where A1, A2 are treated as the two sender systems and R is the reference system. We a