ترغب بنشر مسار تعليمي؟ اضغط هنا

One-Shot Randomized and Nonrandomized Partial Decoupling

91   0   0.0 ( 0 )
 نشر من قبل Eyuri Wakakuwa
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a task that we call partial decoupling, in which a bipartite quantum state is transformed by a unitary operation on one of the two subsystems and then is subject to the action of a quantum channel. We assume that the subsystem is decomposed into a direct-sum-product form, which often appears in the context of quantum information theory. The unitary is chosen at random from the set of unitaries having a simple form under the decomposition. The goal of the task is to make the final state, for typical choices of the unitary, close to the averaged final state over the unitaries. We consider a one-shot scenario, and derive upper and lower bounds on the average distance between the two states. The bounds are represented simply in terms of smooth conditional entropies of quantum states involving the initial state, the channel and the decomposition. Thereby we provide generalizations of the one-shot decoupling theorem. The obtained result would lead to further development of the decoupling approaches in quantum information theory and fundamental physics.



قيم البحث

اقرأ أيضاً

We analyze a task in which classical and quantum messages are simultaneously communicated via a noisy quantum channel, assisted with a limited amount of shared entanglement. We derive the direct and converse bounds for the one-shot capacity region. T he bounds are represented in terms of the smooth conditional entropies and the error tolerance, and coincide in the asymptotic limit of infinitely many uses of the channel. The direct and converse bounds for various communication tasks are obtained as corollaries, both for one-shot and asymptotic scenarios. The proof is based on the randomized partial decoupling theorem, which is a generalization of the decoupling theorem. Thereby we provide a unified decoupling approach to the one-shot quantum channel coding, by fully incorporating classical communication, quantum communication and shared entanglement.
In this work, we prove a novel one-shot multi-sender decoupling theorem generalising Dupuis result. We start off with a multipartite quantum state, say on A1 A2 R, where A1, A2 are treated as the two sender systems and R is the reference system. We a pply independent Haar random unitaries in tensor product on A1 and A2 and then send the resulting systems through a quantum channel. We want the channel output B to be almost in tensor with the untouched reference R. Our main result shows that this is indeed the case if suitable entropic conditions are met. An immediate application of our main result is to obtain a one-shot simultaneous decoder for sending quantum information over a k-sender entanglement unassisted quantum multiple access channel (QMAC). The rate region achieved by this decoder is the natural one-shot quantum analogue of the pentagonal classical rate region. Assuming a simultaneous smoothing conjecture, this one-shot rate region approaches the optimal rate region of Yard, Dein the asymptotic iid limit. Our work is the first one to obtain a non-trivial simultaneous decoder for the QMAC with limited entanglement assistance in both one-shot and asymptotic iid settings; previous works used unlimited entanglement assistance.
We consider state redistribution of a hybrid information source that has both classical and quantum components. The sender transmits classical and quantum information at the same time to the receiver, in the presence of classical and quantum side inf ormation both at the sender and at the decoder. The available resources are shared entanglement, and noiseless classical and quantum communication channels. We derive one-shot direct and converse bounds for these three resources, represented in terms of the smooth conditional entropies of the source state. Various coding theorems for two-party source coding problems are systematically obtained by reduction from our results, including the ones that have not been addressed in previous literatures.
We revisit the task of quantum state redistribution in the one-shot setting, and design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains. More precisely, the distance is defined in terms of quantum max-relative entropy and quantum hypothesis testing entropy. Our result is the first to operationally connect quantum state redistribution and quantum Markov chains, and can be interpreted as an operational interpretation for a possible one-shot analogue of quantum conditional mutual information. The communication cost of our protocol is lower than all previously known ones and asymptotically achieves the well-known rate of quantum conditional mutual information. Thus, our work takes a step towards the important open question of near-optimal characterization of the one-shot quantum state redistribution.
We develop a unified framework to characterize one-shot transformations of dynamical quantum resources in terms of resource quantifiers, establishing universal conditions for exact and approximate transformations in general resource theories. Our fra mework encompasses all dynamical resources represented as quantum channels, including those with a specific structure --- such as boxes, assemblages, and measurements --- thus immediately applying in a vast range of physical settings. For the particularly important manipulation tasks of distillation and dilution, we show that our conditions become necessary and sufficient for broad classes of important theories, enabling an exact characterization of these tasks and establishing a precise connection between operational problems and resource monotones based on entropic divergences. We exemplify our results by considering explicit applications to: quantum communication, where we obtain exact expressions for one-shot quantum capacity and simulation cost assisted by no-signalling, separability-preserving, and positive partial transpose-preserving codes; as well as to nonlocality, contextuality, and measurement incompatibility, where we present operational applications of a number of relevant resource measures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا