ﻻ يوجد ملخص باللغة العربية
As an essential task in task-oriented dialog systems, slot filling requires extensive training data in a certain domain. However, such data are not always available. Hence, cross-domain slot filling has naturally arisen to cope with this data scarcity problem. In this paper, we propose a Coarse-to-fine approach (Coach) for cross-domain slot filling. Our model first learns the general pattern of slot entities by detecting whether the tokens are slot entities or not. It then predicts the specific types for the slot entities. In addition, we propose a template regularization approach to improve the adaptation robustness by regularizing the representation of utterances based on utterance templates. Experimental results show that our model significantly outperforms state-of-the-art approaches in slot filling. Furthermore, our model can also be applied to the cross-domain named entity recognition task, and it achieves better adaptation performance than other existing baselines. The code is available at https://github.com/zliucr/coach.
Slot filling is a fundamental task in dialog state tracking in task-oriented dialog systems. In multi-domain task-oriented dialog system, user utterances and system responses may mention multiple named entities and attributes values. A system needs t
Zero-shot cross-domain dialogue state tracking (DST) enables us to handle task-oriented dialogue in unseen domains without the expense of collecting in-domain data. In this paper, we propose a slot description enhanced generative approach for zero-sh
Slot filling, a fundamental module of spoken language understanding, often suffers from insufficient quantity and diversity of training data. To remedy this, we propose a novel Cluster-to-Cluster generation framework for Data Augmentation (DA), named
Automatically inducing high quality knowledge graphs from a given collection of documents still remains a challenging problem in AI. One way to make headway for this problem is through advancements in a related task known as slot filling. In this tas
Despite great progress in supervised semantic segmentation,a large performance drop is usually observed when deploying the model in the wild. Domain adaptation methods tackle the issue by aligning the source domain and the target domain. However, mos