ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Retrieval Augmented Generation for Zero-shot Slot Filling

139   0   0.0 ( 0 )
 نشر من قبل Gaetano Rossiello
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatically inducing high quality knowledge graphs from a given collection of documents still remains a challenging problem in AI. One way to make headway for this problem is through advancements in a related task known as slot filling. In this task, given an entity query in form of [Entity, Slot, ?], a system is asked to fill the slot by generating or extracting the missing value exploiting evidence extracted from relevant passage(s) in the given document collection. The recent works in the field try to solve this task in an end-to-end fashion using retrieval-based language models. In this paper, we present a novel approach to zero-shot slot filling that extends dense passage retrieval with hard negatives and robust training procedures for retrieval augmented generation models. Our model reports large improvements on both T-REx and zsRE slot filling datasets, improving both passage retrieval and slot value generation, and ranking at the top-1 position in the KILT leaderboard. Moreover, we demonstrate the robustness of our system showing its domain adaptation capability on a new variant of the TACRED dataset for slot filling, through a combination of zero/few-shot learning. We release the source code and pre-trained models.



قيم البحث

اقرأ أيضاً

The ability to automatically extract Knowledge Graphs (KG) from a given collection of documents is a long-standing problem in Artificial Intelligence. One way to assess this capability is through the task of slot filling. Given an entity query in for m of [Entity, Slot, ?], a system is asked to `fill the slot by generating or extracting the missing value from a relevant passage or passages. This capability is crucial to create systems for automatic knowledge base population, which is becoming in ever-increasing demand, especially in enterprise applications. Recently, there has been a promising direction in evaluating language models in the same way we would evaluate knowledge bases, and the task of slot filling is the most suitable to this intent. The recent advancements in the field try to solve this task in an end-to-end fashion using retrieval-based language models. Models like Retrieval Augmented Generation (RAG) show surprisingly good performance without involving complex information extraction pipelines. However, the results achieved by these models on the two slot filling tasks in the KILT benchmark are still not at the level required by real-world information extraction systems. In this paper, we describe several strategies we adopted to improve the retriever and the generator of RAG in order to make it a better slot filler. Our KGI0 system (available at https://github.com/IBM/retrieve-write-slot-filling) reached the top-1 position on the KILT leaderboard on both T-REx and zsRE dataset with a large margin.
Slot filling, a fundamental module of spoken language understanding, often suffers from insufficient quantity and diversity of training data. To remedy this, we propose a novel Cluster-to-Cluster generation framework for Data Augmentation (DA), named C2C-GenDA. It enlarges the training set by reconstructing existing utterances into alternative expressions while keeping semantic. Different from previous DA works that reconstruct utterances one by one independently, C2C-GenDA jointly encodes multiple existing utterances of the same semantics and simultaneously decodes multiple unseen expressions. Jointly generating multiple new utterances allows to consider the relations between generated instances and encourages diversity. Besides, encoding multiple existing utterances endows C2C with a wider view of existing expressions, helping to reduce generation that duplicates existing data. Experiments on ATIS and Snips datasets show that instances augmented by C2C-GenDA improve slot filling by 7.99 (11.9%) and 5.76 (13.6%) F-scores respectively, when there are only hundreds of training utterances.
In this paper, we investigate few-shot joint learning for dialogue language understanding. Most existing few-shot models learn a single task each time with only a few examples. However, dialogue language understanding contains two closely related tas ks, i.e., intent detection and slot filling, and often benefits from jointly learning the two tasks. This calls for new few-shot learning techniques that are able to capture task relations from only a few examples and jointly learn multiple tasks. To achieve this, we propose a similarity-based few-shot learning scheme, named Contrastive Prototype Merging network (ConProm), that learns to bridge metric spaces of intent and slot on data-rich domains, and then adapt the bridged metric space to the specific few-shot domain. Experiments on two public datasets, Snips and FewJoint, show that our model significantly outperforms the strong baselines in one and five shots settings.
150 - Dian Yu , Luheng He , Yuan Zhang 2021
Few-shot learning arises in important practical scenarios, such as when a natural language understanding system needs to learn new semantic labels for an emerging, resource-scarce domain. In this paper, we explore retrieval-based methods for intent c lassification and slot filling tasks in few-shot settings. Retrieval-based methods make predictions based on labeled examples in the retrieval index that are similar to the input, and thus can adapt to new domains simply by changing the index without having to retrain the model. However, it is non-trivial to apply such methods on tasks with a complex label space like slot filling. To this end, we propose a span-level retrieval method that learns similar contextualized representations for spans with the same label via a novel batch-softmax objective. At inference time, we use the labels of the retrieved spans to construct the final structure with the highest aggregated score. Our method outperforms previous systems in various few-shot settings on the CLINC and SNIPS benchmarks.
Neural models for automated fact verification have achieved promising results thanks to the availability of large, human-annotated datasets. However, for each new domain that requires fact verification, creating a dataset by manually writing claims a nd linking them to their supporting evidence is expensive. We develop QACG, a framework for training a robust fact verification model by using automatically generated claims that can be supported, refuted, or unverifiable from evidence from Wikipedia. QACG generates question-answer pairs from the evidence and then converts them into different types of claims. Experiments on the FEVER dataset show that our QACG framework significantly reduces the demand for human-annotated training data. In a zero-shot scenario, QACG improves a RoBERTa models F1 from 50% to 77%, equivalent in performance to 2K+ manually-curated examples. Our QACG code is publicly available.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا