ﻻ يوجد ملخص باللغة العربية
As a nonlocal extension of continuum mechanics, peridynamics has been widely and effectively applied in different fields where discontinuities in the field variables arise from an initially continuous body. An important component of the constitutive model in peridynamics is the influence function which weights the contribution of all the interactions over a nonlocal region surrounding a point of interest. Recent work has shown that in solid mechanics the influence function has a strong relationship with the heterogeneity of a materials micro-structure. However, determining an accurate influence function analytically from a given micro-structure typically requires lengthy derivations and complex mathematical models. To avoid these complexities, the goal of this paper is to develop a data-driven regression algorithm to find the optimal bond-based peridynamic model to describe the macro-scale deformation of linear elastic medium with periodic heterogeneity. We generate macro-scale deformation training data by averaging over periodic micro-structure unit cells and add a physical energy constraint representing the homogenized elastic modulus of the micro-structure to the regression algorithm. We demonstrate this scheme for examples of one- and two-dimensional linear elastodynamics and show that the energy constraint improves the accuracy of the resulting peridynamic model.
The overarching goal of this work is to develop an accurate, robust, and stable methodology for finite deformation modeling using strong-form peridynamics (PD) and the correspondence modeling framework. We adopt recently developed methods that make u
The promise of machine learning has been explored in a variety of scientific disciplines in the last few years, however, its application on first-principles based computationally expensive tools is still in nascent stage. Even with the advances in co
The overarching goal of this work is to develop an accurate, robust, and stable methodology for finite deformation modeling using strong-form peridynamics (PD) and the correspondence modeling framework. We adopt recently developed methods that make u
This paper studies a model of two-phase flow with an immersed material viscous interface and a finite element method for numerical solution of the resulting system of PDEs. The interaction between the bulk and surface media is characterized by no-pen
This paper develops the genuinely multidimensional HLL Riemann solver and finite volume scheme for the two-dimensional special relativistic hydrodynamic equations on Cartesian meshes and studies its physical-constraint-preserving (PCP) property. Seve