ترغب بنشر مسار تعليمي؟ اضغط هنا

A machine-learning framework for peridynamic material models with physical constraints

98   0   0.0 ( 0 )
 نشر من قبل Xiao Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As a nonlocal extension of continuum mechanics, peridynamics has been widely and effectively applied in different fields where discontinuities in the field variables arise from an initially continuous body. An important component of the constitutive model in peridynamics is the influence function which weights the contribution of all the interactions over a nonlocal region surrounding a point of interest. Recent work has shown that in solid mechanics the influence function has a strong relationship with the heterogeneity of a materials micro-structure. However, determining an accurate influence function analytically from a given micro-structure typically requires lengthy derivations and complex mathematical models. To avoid these complexities, the goal of this paper is to develop a data-driven regression algorithm to find the optimal bond-based peridynamic model to describe the macro-scale deformation of linear elastic medium with periodic heterogeneity. We generate macro-scale deformation training data by averaging over periodic micro-structure unit cells and add a physical energy constraint representing the homogenized elastic modulus of the micro-structure to the regression algorithm. We demonstrate this scheme for examples of one- and two-dimensional linear elastodynamics and show that the energy constraint improves the accuracy of the resulting peridynamic model.



قيم البحث

اقرأ أيضاً

The overarching goal of this work is to develop an accurate, robust, and stable methodology for finite deformation modeling using strong-form peridynamics (PD) and the correspondence modeling framework. We adopt recently developed methods that make u se of higher-order corrections to improve the computation of integrals in the correspondence formulation. A unified approach is presented that incorporates the reproducing kernel (RK) and generalized moving least square (GMLS) approximations in PD to obtain higher-order gradients. We show, however, that the improved quadrature rule does not suffice to handle correspondence-modeling instability issues. In Part I of this paper, a bond-associative, higher-order core formulation is developed that naturally provides stability. Numerical examples are provided to study the convergence of RK-PD, GMLS-PD, and their bond-associat
The promise of machine learning has been explored in a variety of scientific disciplines in the last few years, however, its application on first-principles based computationally expensive tools is still in nascent stage. Even with the advances in co mputational resources and power, transient simulations of large-scale dynamic systems using a variety of the first-principles based computational tools are still limited. In this work, we propose an ensemble approach where we combine one such computationally expensive tool, called discrete element method (DEM), with a time-series forecasting method called auto-regressive integrated moving average (ARIMA) and machine-learning methods to significantly reduce the computational burden while retaining model accuracy and performance. The developed machine-learning model shows good predictability and agreement with the literature, demonstrating its tremendous potential in scientific computing.
The overarching goal of this work is to develop an accurate, robust, and stable methodology for finite deformation modeling using strong-form peridynamics (PD) and the correspondence modeling framework. We adopt recently developed methods that make u se of higher-order corrections to improve the computation of integrals in the correspondence formulation. A unified approach is presented that incorporates the reproducing kernel (RK) and generalized moving least square (GMLS) approximations in PD to obtain higher-order gradients. We show, however, that the improved quadrature rule does not suffice to handle correspondence-modeling instability issues. In Part I of this paper, a bond-associative, higher-order core formulation is developed that naturally provides stability. Numerical examples are provided to study the convergence of RK-PD, GMLS-PD, and their bond-associat
This paper studies a model of two-phase flow with an immersed material viscous interface and a finite element method for numerical solution of the resulting system of PDEs. The interaction between the bulk and surface media is characterized by no-pen etration and slip with friction interface conditions. The system is shown to be dissipative and a model stationary problem is proved to be well-posed. The finite element method applied in this paper belongs to a family of unfitted discretizations. The performance of the method when model and discretization parameters vary is assessed. Moreover, an iterative procedure based on the splitting of the system into bulk and surface problems is introduced and studied numerically.
122 - Dan Ling , Huazhong Tang 2020
This paper develops the genuinely multidimensional HLL Riemann solver and finite volume scheme for the two-dimensional special relativistic hydrodynamic equations on Cartesian meshes and studies its physical-constraint-preserving (PCP) property. Seve ral numerical results demonstrate the accuracy, the performance and the resolution of the shock waves and the genuinely multi-dimensional wave structures of the proposed PCP scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا