ترغب بنشر مسار تعليمي؟ اضغط هنا

Local bifurcation structure of a bouncing ball system with a piecewise polynomial function for table displacement

62   0   0.0 ( 0 )
 نشر من قبل Yudai Okishio
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The system in which a small rigid ball is bouncing repeatedly on a massive at table vibrating vertically, so-called the bouncing ball system, has been widely studied. Under the assumption that the table is vibrating with a piecewise polynomial function of time, the bifurcation diagram changes qualitatively depending on the order of the polynomial function. We elucidate the mechanism of the difference in the bifurcation diagrams by focusing on the two-period solution. In addition, we derive the approximate curve of the branch close to the period-doubling bifurcation point in the case of the piecewise cubic function of time for the table vibration. We also performed numerical calculation, and we demonstrate that the approximations well reproduce the numerical results.



قيم البحث

اقرأ أيضاً

Nonlinear dynamics of a bouncing ball moving vertically in a gravitational field and colliding with a moving limiter is considered and the Poincare map, describing evolution from an impact to the next impact, is described. Displacement of the limiter is assumed as periodic, cubic function of time. Due to simplicity of this function analytical computations are possible. Several dynamical modes, such as fixed points, 2 - cycles and chaotic bands are studied analytically and numerically. It is shown that chaotic bands are created from fixed points after first period doubling in a corner-type bifurcation. Equation for the time of the next impact is solved exactly for the case of two subsequent impacts occurring in the same period of limiters motion making analysis of chattering possible.
Nonlinear dynamics of a bouncing ball moving vertically in a gravitational field and colliding with a moving limiter is considered and the Poincare map, describing evolution from an impact to the next impact, is described. Displacement of the table i s approximated in one period by four cubic polynomials. Results obtained for this model are used to elucidate dynamics of the standard model of bouncing ball with sinusoidal motion of the limiter.
Some dynamical properties of a bouncing ball model under the presence of an external force modeled by two nonlinear terms are studied. The description of the model is made by use of a two dimensional nonlinear measure preserving map on the variables velocity of the particle and time. We show that raising the straight of a control parameter which controls one of the nonlinearities, the positive Lyapunov exponent decreases in the average and suffers abrupt changes. We also show that for a specific range of control parameters, the model exhibits the phenomenon of Fermi acceleration. The explanation of both behaviours is given in terms of the shape of the external force and due to a discontinuity of the moving walls velocity.
Results regarding probable bifurcations from fixed points are presented in the context of general dynamical systems (real, random matrices), time-delay dynamical systems (companion matrices), and a set of mappings known for their properties as univer sal approximators (neural networks). The eigenvalue spectra is considered both numerically and analytically using previous work of Edelman et. al. Based upon the numerical evidence, various conjectures are presented. The conclusion is that in many circumstances, most bifurcations from fixed points of large dynamical systems will be due to complex eigenvalues. Nevertheless, surprising situations are presented for which the aforementioned conclusion is not general, e.g. real random matrices with Gaussian elements with a large positive mean and finite variance.
The inner structure of the attractor appearing when the Varley-Gradwell-Hassell population model bifurcates from regular to chaotic behaviour is studied. By algebraic and geometric arguments the coexistence of a continuum of neutrally stable limit cy cles with different periods in the attractor is explained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا