ﻻ يوجد ملخص باللغة العربية
Nonlinear dynamics of a bouncing ball moving vertically in a gravitational field and colliding with a moving limiter is considered and the Poincare map, describing evolution from an impact to the next impact, is described. Displacement of the table is approximated in one period by four cubic polynomials. Results obtained for this model are used to elucidate dynamics of the standard model of bouncing ball with sinusoidal motion of the limiter.
Nonlinear dynamics of a bouncing ball moving vertically in a gravitational field and colliding with a moving limiter is considered and the Poincare map, describing evolution from an impact to the next impact, is described. Displacement of the limiter
The system in which a small rigid ball is bouncing repeatedly on a massive at table vibrating vertically, so-called the bouncing ball system, has been widely studied. Under the assumption that the table is vibrating with a piecewise polynomial functi
Some dynamical properties of a bouncing ball model under the presence of an external force modeled by two nonlinear terms are studied. The description of the model is made by use of a two dimensional nonlinear measure preserving map on the variables
A bouncing rubber ball under a motion sensor is a classic of introductory physics labs. It is often used to measure the acceleration due to gravity, and can also demonstrate conservation of energy. By observing that the ball rises to a lower height u
We investigate dynamic properties of bouncing and penetration in colliding binary and ternary Bose-Einstein condensates comprised of different Zeeman or hyperfine states of 87Rb. Through the application of magnetic field gradient pulses, two- or thre