ﻻ يوجد ملخص باللغة العربية
We study the effect of a uniform pseudomagnetic field, induced by a strain in a monolayer and double layer of gapped graphene, acting on excitons. For our analysis it is crucial that the pseudomagnetic field acts on the charges of the constituent particles of the excitons, i.e., the electrons and holes, the same way in contrast to a magnetic field. Moreover, using a circularly polarized laser field, the electrons and the holes can be excited only in one valley of the honeycomb lattice of gapped graphene. This breaks the time-reversal symmetry and provides the possibility to observe the various Quantum Hall phenomena in this pseudomagnetoexciton system. Our study poses a fundamental problem of the quantum Hall effect for composite particles and paves the way for quantum Hall physics of pseudomagnetoexcitons.
Domain walls, topological defects that define the frontier between regions of different stacking in multilayer graphene, have proved to host exciting physics. The ability of tuning these topological defects in-situ in an electronic transport experime
The transport properties of epitaxial graphene on SiC(0001) at quantizing magnetic fields are investigated. Devices patterned perpendicularly to SiC terraces clearly exhibit bilayer inclusions distributed along the substrate step edges. We show that
Many striking non-equilibrium phenomena have been discovered or predicted in optically-driven quantum solids, ranging from light-induced superconductivity to Floquet-engineered topological phases. These effects are expected to lead to dramatic change
We develop a theory of the valley Hall effect in high-quality graphene samples, in which strain fluctuation-induced random gauge potentials have been suggested as the dominant source of disorder. We find a near-quantized value of valley Hall conducti
We report on the stability of the quantum Hall plateau in wide Hall bars made from a chemically gated graphene film grown on SiC. The $ u=2$ quantized plateau appears from fields $B simeq 5$ T and persists up to $B simeq 80$ T. At high current densit