ﻻ يوجد ملخص باللغة العربية
We report on the stability of the quantum Hall plateau in wide Hall bars made from a chemically gated graphene film grown on SiC. The $ u=2$ quantized plateau appears from fields $B simeq 5$ T and persists up to $B simeq 80$ T. At high current density, in the breakdown regime, the longitudinal resistance oscillates with a $1/B$ periodicity and an anomalous phase, which we relate to the presence of additional electron reservoirs. The high field experimental data suggest that these reservoirs induce a continuous increase of the carrier density up to the highest available magnetic field, thus enlarging the quantum plateaus. These in-plane inhomogeneities, in the form of high carrier density graphene pockets, modulate the quantum Hall effect breakdown and decrease the breakdown current.
The quantum anomalous Hall effect (QAHE) realizes dissipationless longitudinal resistivity and quantized Hall resistance without the need of an external magnetic field. However, when reducing the device dimensions or increasing the current density, a
Puzzling results obtained from torque magnetometry in the quantum Hall effect (QHE) regime are presented, and a theory is proposed for their explanation. Magnetic moment saturation, which is usually attributed to the QHE breakdown, is shown to be rel
We report on Hall field-induced resistance oscillations (HIRO) in a 60 nm-wide GaAs/AlGaAs quantum well with an emph{in situ} grown back gate, which allows tuning the carrier density $n$. At low $n$, when all electrons are confined to the lowest subb
We study the effect of a uniform pseudomagnetic field, induced by a strain in a monolayer and double layer of gapped graphene, acting on excitons. For our analysis it is crucial that the pseudomagnetic field acts on the charges of the constituent par
We investigate the transport properties of high-quality single-layer graphene, epitaxially grown on a 6H-SiC(0001) substrate. We have measured transport properties, in particular charge carrier density, mobility, conductivity and magnetoconductance o