ترغب بنشر مسار تعليمي؟ اضغط هنا

Bilayer-induced asymmetric quantum Hall effect in epitaxial graphene

156   0   0.0 ( 0 )
 نشر من قبل Stefan Heun
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transport properties of epitaxial graphene on SiC(0001) at quantizing magnetic fields are investigated. Devices patterned perpendicularly to SiC terraces clearly exhibit bilayer inclusions distributed along the substrate step edges. We show that the transport properties in the quantum Hall regime are heavily affected by the presence of bilayer inclusions, and observe a significant departure from the conventional quantum Hall characteristics. A quantitative model involving enhanced inter-channel scattering mediated by the presence of bilayer inclusions is presented that successfully explains the observed symmetry properties.



قيم البحث

اقرأ أيضاً

We study an epitaxial graphene monolayer with bilayer inclusions via magnetotransport measurements and scanning gate microscopy at low temperatures. We find that bilayer inclusions can be metallic or insulating depending on the initial and gated carr ier density. The metallic bilayers act as equipotential shorts for edge currents, while closely spaced insulating bilayers guide the flow of electrons in the monolayer constriction, which was locally gated using a scanning gate probe.
261 - Xiaosong Wu , Yike Hu , Ming Ruan 2009
The observation of the anomalous quantum Hall effect in exfoliated graphene flakes triggered an explosion of interest in graphene. It was however not observed in high quality epitaxial graphene multilayers grown on silicon carbide substrates. The qua ntum Hall effect is shown on epitaxial graphene monolayers that were deliberately grown over substrate steps and subjected to harsh processing procedures, demonstrating the robustness of the epitaxial graphene monolayers and the immunity of their transport properties to temperature, contamination and substrate imperfections. The mobility of the monolayer C-face sample is 19,000 cm^2/Vs. This is an important step towards the realization of epitaxial graphene based electronics.
We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic fiel d generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors $ u=pm 2$, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.
We have measured the magneto-resistance of freely suspended high-mobility bilayer graphene. For magnetic fields $B>1$ T we observe the opening of a field induced gap at the charge neutrality point characterized by a diverging resistance. For higher f ields the eight-fold degenerated lowest Landau level lifts completely. Both the sequence of this symmetry breaking and the strong transition of the gap-size point to a ferromagnetic nature of the insulating phase developing at the charge neutrality point.
283 - R. Ma , L. Sheng , R. Shen 2009
We numerically study the quantum Hall effect (QHE) in bilayer graphene based on tight-binding model in the presence of disorder. Two distinct QHE regimes are identified in the full energy band separated by a critical region with non-quantized Hall Ef fect. The Hall conductivity around the band center (Dirac point) shows an anomalous quantization proportional to the valley degeneracy, but the $ u=0$ plateau is markedly absent, which is in agreement with experimental observation. In the presence of disorder, the Hall plateaus can be destroyed through the float-up of extended levels toward the band center and higher plateaus disappear first. The central two plateaus around the band center are most robust against disorder scattering, which is separated by a small critical region in between near the Dirac point. The longitudinal conductance around the Dirac point is shown to be nearly a constant in a range of disorder strength, till the last two QHE plateaus completely collapse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا