ترغب بنشر مسار تعليمي؟ اضغط هنا

PLATON II: New Capabilities And A Comprehensive Retrieval on HD 189733b Transit and Eclipse Data

439   0   0.0 ( 0 )
 نشر من قبل Michael Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, we introduced PLanetary Atmospheric Tool for Observer Noobs (PLATON), a Python package that calculates model transmission spectra for exoplanets and retrieves atmospheric characteristics based on observed spectra. We now expand its capabilities to include the ability to compute secondary eclipse depths. We have also added the option to calculate models using the correlated-$k$ method for radiative transfer, which improves accuracy without sacrificing speed. Additionally, we update the opacities in PLATON--many of which were generated using old or proprietary line lists--using the most recent and complete public line lists. These opacities are made available at R=1000 and R=10,000 over the 0.3--30 um range, and at R=375,000 in select near IR bands, making it possible to utilize PLATON for ground-based high resolution cross correlation studies. To demonstrate PLATONs new capabilities, we perform a retrieval on published HST and Spitzer transmission and emission spectra of the archetypal hot Jupiter HD 189733b. This is the first joint transit and secondary eclipse retrieval for this planet in the literature, as well as the most comprehensive set of both transit and eclipse data assembled for a retrieval to date. We find that these high signal-to-noise data are well-matched by atmosphere models with a C/O ratio of $0.66_{-0.09}^{+0.05}$ and a metallicity of $12_{-5}^{+8}$ times solar where the terminator is dominated by extended nanometer-sized haze particles at optical wavelengths. These are among the smallest uncertainties reported to date for an exoplanet, demonstrating both the power and the limitations of HST and Spitzer exoplanet observations.

قيم البحث

اقرأ أيضاً

179 - Kaspar von Braun 2010
Transiting exoplanets provide access to data to study the mass-radius relation and internal structure of extrasolar planets. Long-period transiting planets allow insight into planetary environments similar to the Solar System where, in contrast to ho t Jupiters, planets are not constantly exposed to the intense radiation of their parent stars. Observations of secondary eclipses additionally permit studies of exoplanet temperatures and large-scale exo-atmospheric properties. We show how transit and eclipse probabilities are related to planet-star system geometries, particularly for long-period, eccentric orbits. The resulting target selection and observational strategies represent the principal ingredients of our photometric survey of known radial-velocity planets with the aim of detecting transit signatures (TERMS).
73 - Hans J. Deeg 2016
Context: Transit or eclipse timing variations have proven to be a valuable tool in exoplanet research. However, no simple way to estimate the potential precision of such timing measures has been presented yet, nor are guidelines available regarding t he relation between timing errors and sampling rate. Aims: A `timing error estimator (TEE) equation is presented that requires only basic transit parameters as input. With the TEE, it is straightforward to estimate timing precisions both for actual data as well as for future instruments, such as the TESS and PLATO space missions. Methods: A derivation of the timing error based on a trapezoidal transit shape is given. We also verify the TEE on realistically modeled transits using Monte Carlo simulations and determine its validity range, exploring in particular the interplay between ingress/egress times and sampling rates. Results: The simulations show that the TEE gives timing errors very close to the correct value, as long as the temporal sampling is faster than transit ingress/egress durations and transits with very low S/N are avoided. Conclusions: The TEE is a useful tool to estimate eclipse or transit timing errors in actual and future data-sets. In combination with an equation to estimate period errors (Deeg 2015), predictions for the ephemeris precision of long-coverage observations are possible as well. The tests for the TEEs validity-range led also to implications for instrumental design: Temporal sampling has to be faster than transit in- or egress durations, or a loss in timing-precision will occur. An application to the TESS mission shows that transits close to its detection limit will have timing uncertainties that exceed 1 hour within a few months after their acquisition. Prompt follow-up observations will be needed to avoid a `loosing of their ephemeris.
Here we present the analysis of multi-epoch secondary eclipse observations of HD 189733b and HD 209458b as a probe of temporal variability in the planetary climate using both Spitzer channels 1 and 2 (3.6 and 4.5 um). Constraining temporal variabilit y will inform models and identify physical processes occurring at either length scales too small to directly observe or at pressure levels that are inaccessible to transit observations. We do not detect statistically significant variability and are able to place useful upper limits on the IR variability amplitudes in these atmospheres. There are very few planets with multi-epoch observations at the required precision to probe variability in dayside emission. The observations considered in this study span several years, providing insight into temporal variability at multiple timescales. In the case of HD 189733b, the best fit eclipse depths for the channel 2 observations exhibit a scatter of 102 ppm about a median depth of 1827 ppm and in channel 1 exhibit a scatter of 88 ppm about a median depth of 1481 ppm. For HD 209458b, the best fit eclipse depths for the channel 2 observations exhibit a scatter of 22 ppm about a median depth of 1406 ppm and in channel 1 exhibit a scatter of 131 ppm about a median depth of 1092 ppm. The precision and scatter in these observations allow us to constrain variability to less than (5.6% and 6.0%) and (12% and 1.6%) for channels (1,2) of HD 189733b and HD 209458b respectively. There is a difference in the best fit eclipse timing compared to the predicted time consistent with an offset hotspot as predicted by GCMs and confirmed in previous phase curve observations.
We present analysis of XMM-Newton Optical Monitor observations in the near-ultraviolet of HD 189733, covering twenty primary transits of its hot Jupiter planet. The transit is clearly detected with both the UVW2 and UVM2 filters, and our fits to the data reveal transit depths in agreement with that observed optically. The measured depths correspond to radii of $1.059^{+0.046}_{-0.050}$ and $0.94^{+0.15}_{-0.17}$ times the optically-measured radius (1.187 R$_{rm J}$ at 4950 r{A}) in the UVW2 and UVM2 bandpasses, respectively. We also find no statistically significant variation in the transit depth across the 8 year baseline of the observations. We rule out extended broadband absorption towards or beyond the Roche lobe at the wavelengths investigated, although observations with higher spectral resolution are required to determine if absorption out to those distances from the planet is present in individual near-UV lines.
This and companion papers by Harrington et al. and Blecic et al. present the Bayesian Atmospheric Radiative Transfer ({BART}) code, an open-source, open-development package to characterize extrasolar-planet atmospheres. {BART} combines a thermochemic al equilibrium abundances ({TEA}), a radiative-transfer ({transit}), and a Bayesian statistical (MC3) module to constrain atmospheric temperatures and molecular abundances for given spectroscopic observations. Here, we describe the {transit} radiative-transfer package, an efficient line-by-line radiative-transfer C code for one-dimensional atmospheres, developed by P. Rojo and further modified by the UCF exoplanet group. This code produces transmission and hemisphere-integrated emission spectra. {transit} handles line-by-line opacities from HITRAN, Partridge & Schwenke ({water}), Schwenke (TiO), and Plez (VO); and collision-induced absorption from Borysow, HITRAN, and ExoMol. {transit} emission-spectra models agree with models from C. Morley (priv. comm.) within a few percent. We applied {BART} to the {Spitzer} and {Hubble} transit observations of the Neptune-sized planet HAT-P-11b. Our results generally agree with those from previous studies, constraining the {water} abundance and finding an atmosphere enhanced in heavy elements. Different conclusions start to emerge when we make different assumptions from other studies. The {BART} source code and documentation are available at https://github.com/exosports/BART.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا