ﻻ يوجد ملخص باللغة العربية
This and companion papers by Harrington et al. and Blecic et al. present the Bayesian Atmospheric Radiative Transfer ({BART}) code, an open-source, open-development package to characterize extrasolar-planet atmospheres. {BART} combines a thermochemical equilibrium abundances ({TEA}), a radiative-transfer ({transit}), and a Bayesian statistical (MC3) module to constrain atmospheric temperatures and molecular abundances for given spectroscopic observations. Here, we describe the {transit} radiative-transfer package, an efficient line-by-line radiative-transfer C code for one-dimensional atmospheres, developed by P. Rojo and further modified by the UCF exoplanet group. This code produces transmission and hemisphere-integrated emission spectra. {transit} handles line-by-line opacities from HITRAN, Partridge & Schwenke ({water}), Schwenke (TiO), and Plez (VO); and collision-induced absorption from Borysow, HITRAN, and ExoMol. {transit} emission-spectra models agree with models from C. Morley (priv. comm.) within a few percent. We applied {BART} to the {Spitzer} and {Hubble} transit observations of the Neptune-sized planet HAT-P-11b. Our results generally agree with those from previous studies, constraining the {water} abundance and finding an atmosphere enhanced in heavy elements. Different conclusions start to emerge when we make different assumptions from other studies. The {BART} source code and documentation are available at https://github.com/exosports/BART.
We present the open-source Bayesian Atmospheric Radiative Transfer (BART) retrieval package, which produces estimates and uncertainties for an atmospheres thermal profile and chemical abundances from observations. Several BART components are also sta
This and companion papers by Harrington et al. 2021, submitted and Cubillos et al. 2021, submitted describe an open-source retrieval framework, Bayesian Atmospheric Radiative Transfer (BART), available to the community under the reproducible-research
HYPERION is a new three-dimensional dust continuum Monte-Carlo radiative transfer code that is designed to be as generic as possible, allowing radiative transfer to be computed through a variety of three-dimensional grids. The main part of the code i
EMMA is a cosmological simulation code aimed at investigating the reionization epoch. It handles simultaneously collisionless and gas dynamics, as well as radiative transfer physics using a moment-based description with the M1 approximation. Field qu
Molecular line-transition lists are an essential ingredient for radiative-transfer calculations. With recent databases now surpassing the billion-lines mark, handling them has become computationally prohibitive, due to both the required processing po