ترغب بنشر مسار تعليمي؟ اضغط هنا

Are we pretraining it right? Digging deeper into visio-linguistic pretraining

132   0   0.0 ( 0 )
 نشر من قبل Amanpreet Singh
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Numerous recent works have proposed pretraining generic visio-linguistic representations and then finetuning them for downstream vision and language tasks. While architecture and objective function design choices have received attention, the choice of pretraining datasets has received little attention. In this work, we question some of the default choices made in literature. For instance, we systematically study how varying similarity between the pretraining dataset domain (textual and visual) and the downstream domain affects performance. Surprisingly, we show that automatically generated data in a domain closer to the downstream task (e.g., VQA v2) is a better choice for pretraining than natural data but of a slightly different domain (e.g., Conceptual Captions). On the other hand, some seemingly reasonable choices of pretraining datasets were found to be entirely ineffective for some downstream tasks. This suggests that despite the numerous recent efforts, vision & language pretraining does not quite work out of the box yet. Overall, as a by-product of our study, we find that simple design choices in pretraining can help us achieve close to state-of-art results on downstream tasks without any architectural changes.



قيم البحث

اقرأ أيضاً

199 - Lei Shi , Kai Shuang , Shijie Geng 2020
Several multi-modality representation learning approaches such as LXMERT and ViLBERT have been proposed recently. Such approaches can achieve superior performance due to the high-level semantic information captured during large-scale multimodal pretr aining. However, as ViLBERT and LXMERT adopt visual region regression and classification loss, they often suffer from domain gap and noisy label problems, based on the visual features having been pretrained on the Visual Genome dataset. To overcome these issues, we propose unbiased Contrastive Visual-Linguistic Pretraining (CVLP), which constructs a visual self-supervised loss built upon contrastive learning. We evaluate CVLP on several down-stream tasks, including VQA, GQA and NLVR2 to validate the superiority of contrastive learning on multi-modality representation learning. Our code is available at: https://github.com/ArcherYunDong/CVLP-.
In this paper, we propose to investigate the problem of out-of-domain visio-linguistic pretraining, where the pretraining data distribution differs from that of downstream data on which the pretrained model will be fine-tuned. Existing methods for th is problem are purely likelihood-based, leading to the spurious correlations and hurt the generalization ability when transferred to out-of-domain downstream tasks. By spurious correlation, we mean that the conditional probability of one token (object or word) given another one can be high (due to the dataset biases) without robust (causal) relationships between them. To mitigate such dataset biases, we propose a Deconfounded Visio-Linguistic Bert framework, abbreviated as DeVLBert, to perform intervention-based learning. We borrow the idea of the backdoor adjustment from the research field of causality and propose several neural-network based architectures for Bert-style out-of-domain pretraining. The quantitative results on three downstream tasks, Image Retrieval (IR), Zero-shot IR, and Visual Question Answering, show the effectiveness of DeVLBert by boosting generalization ability.
This paper digs deeper into factors that influence egocentric gaze. Instead of training deep models for this purpose in a blind manner, we propose to inspect factors that contribute to gaze guidance during daily tasks. Bottom-up saliency and optical flow are assessed versus strong spatial prior baselines. Task-specific cues such as vanishing point, manipulation point, and hand regions are analyzed as representatives of top-down information. We also look into the contribution of these factors by investigating a simple recurrent neural model for ego-centric gaze prediction. First, deep features are extracted for all input video frames. Then, a gated recurrent unit is employed to integrate information over time and to predict the next fixation. We also propose an integrated model that combines the recurrent model with several top-down and bottom-up cues. Extensive experiments over multiple datasets reveal that (1) spatial biases are strong in egocentric videos, (2) bottom-up saliency models perform poorly in predicting gaze and underperform spatial biases, (3) deep features perform better compared to traditional features, (4) as opposed to hand regions, the manipulation point is a strong influential cue for gaze prediction, (5) combining the proposed recurrent model with bottom-up cues, vanishing points and, in particular, manipulation point results in the best gaze prediction accuracy over egocentric videos, (6) the knowledge transfer works best for cases where the tasks or sequences are similar, and (7) task and activity recognition can benefit from gaze prediction. Our findings suggest that (1) there should be more emphasis on hand-object interaction and (2) the egocentric vision community should consider larger datasets including diverse stimuli and more subjects.
Joint vision and language tasks like visual question answering are fascinating because they explore high-level understanding, but at the same time, can be more prone to language biases. In this paper, we explore the biases in the MovieQA dataset and propose a strikingly simple model which can exploit them. We find that using the right word embedding is of utmost importance. By using an appropriately trained word embedding, about half the Question-Answers (QAs) can be answered by looking at the questions and answers alone, completely ignoring narrative context from video clips, subtitles, and movie scripts. Compared to the best published papers on the leaderboard, our simple question + answer only model improves accuracy by 5% for video + subtitle category, 5% for subtitle, 15% for DVS and 6% higher for scripts.
While self-supervised pretraining has proven beneficial for many computer vision tasks, it requires expensive and lengthy computation, large amounts of data, and is sensitive to data augmentation. Prior work demonstrates that models pretrained on dat asets dissimilar to their target data, such as chest X-ray models trained on ImageNet, underperform models trained from scratch. Users that lack the resources to pretrain must use existing models with lower performance. This paper explores Hierarchical PreTraining (HPT), which decreases convergence time and improves accuracy by initializing the pretraining process with an existing pretrained model. Through experimentation on 16 diverse vision datasets, we show HPT converges up to 80x faster, improves accuracy across tasks, and improves the robustness of the self-supervised pretraining process to changes in the image augmentation policy or amount of pretraining data. Taken together, HPT provides a simple framework for obtaining better pretrained representations with less computational resources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا