ﻻ يوجد ملخص باللغة العربية
Numerous recent works have proposed pretraining generic visio-linguistic representations and then finetuning them for downstream vision and language tasks. While architecture and objective function design choices have received attention, the choice of pretraining datasets has received little attention. In this work, we question some of the default choices made in literature. For instance, we systematically study how varying similarity between the pretraining dataset domain (textual and visual) and the downstream domain affects performance. Surprisingly, we show that automatically generated data in a domain closer to the downstream task (e.g., VQA v2) is a better choice for pretraining than natural data but of a slightly different domain (e.g., Conceptual Captions). On the other hand, some seemingly reasonable choices of pretraining datasets were found to be entirely ineffective for some downstream tasks. This suggests that despite the numerous recent efforts, vision & language pretraining does not quite work out of the box yet. Overall, as a by-product of our study, we find that simple design choices in pretraining can help us achieve close to state-of-art results on downstream tasks without any architectural changes.
Several multi-modality representation learning approaches such as LXMERT and ViLBERT have been proposed recently. Such approaches can achieve superior performance due to the high-level semantic information captured during large-scale multimodal pretr
In this paper, we propose to investigate the problem of out-of-domain visio-linguistic pretraining, where the pretraining data distribution differs from that of downstream data on which the pretrained model will be fine-tuned. Existing methods for th
This paper digs deeper into factors that influence egocentric gaze. Instead of training deep models for this purpose in a blind manner, we propose to inspect factors that contribute to gaze guidance during daily tasks. Bottom-up saliency and optical
Joint vision and language tasks like visual question answering are fascinating because they explore high-level understanding, but at the same time, can be more prone to language biases. In this paper, we explore the biases in the MovieQA dataset and
While self-supervised pretraining has proven beneficial for many computer vision tasks, it requires expensive and lengthy computation, large amounts of data, and is sensitive to data augmentation. Prior work demonstrates that models pretrained on dat