ﻻ يوجد ملخص باللغة العربية
While self-supervised pretraining has proven beneficial for many computer vision tasks, it requires expensive and lengthy computation, large amounts of data, and is sensitive to data augmentation. Prior work demonstrates that models pretrained on datasets dissimilar to their target data, such as chest X-ray models trained on ImageNet, underperform models trained from scratch. Users that lack the resources to pretrain must use existing models with lower performance. This paper explores Hierarchical PreTraining (HPT), which decreases convergence time and improves accuracy by initializing the pretraining process with an existing pretrained model. Through experimentation on 16 diverse vision datasets, we show HPT converges up to 80x faster, improves accuracy across tasks, and improves the robustness of the self-supervised pretraining process to changes in the image augmentation policy or amount of pretraining data. Taken together, HPT provides a simple framework for obtaining better pretrained representations with less computational resources.
Recently, self-supervised learning methods like MoCo, SimCLR, BYOL and SwAV have reduced the gap with supervised methods. These results have been achieved in a control environment, that is the highly curated ImageNet dataset. However, the premise of
Self-supervised pretraining for Automated Speech Recognition (ASR) has shown varied degrees of success. In this paper, we propose to jointly learn representations during pretraining from two different modalities: speech and text. The proposed method,
Pretraining on large labeled datasets is a prerequisite to achieve good performance in many computer vision tasks like 2D object recognition, video classification etc. However, pretraining is not widely used for 3D recognition tasks where state-of-th
Self-supervised feature representations have been shown to be useful for supervised classification, few-shot learning, and adversarial robustness. We show that features obtained using self-supervised learning are comparable to, or better than, superv
Pretraining has become a standard technique in computer vision and natural language processing, which usually helps to improve performance substantially. Previously, the most dominant pretraining method is transfer learning (TL), which uses labeled d