ﻻ يوجد ملخص باللغة العربية
Joint vision and language tasks like visual question answering are fascinating because they explore high-level understanding, but at the same time, can be more prone to language biases. In this paper, we explore the biases in the MovieQA dataset and propose a strikingly simple model which can exploit them. We find that using the right word embedding is of utmost importance. By using an appropriately trained word embedding, about half the Question-Answers (QAs) can be answered by looking at the questions and answers alone, completely ignoring narrative context from video clips, subtitles, and movie scripts. Compared to the best published papers on the leaderboard, our simple question + answer only model improves accuracy by 5% for video + subtitle category, 5% for subtitle, 15% for DVS and 6% higher for scripts.
Numerous recent works have proposed pretraining generic visio-linguistic representations and then finetuning them for downstream vision and language tasks. While architecture and objective function design choices have received attention, the choice o
We introduce the MovieQA dataset which aims to evaluate automatic story comprehension from both video and text. The dataset consists of 14,944 questions about 408 movies with high semantic diversity. The questions range from simpler Who did What to W
We study the potential for interaction in natural language classification. We add a limited form of interaction for intent classification, where users provide an initial query using natural language, and the system asks for additional information usi
Yes, and no. We ask whether recent progress on the ImageNet classification benchmark continues to represent meaningful generalization, or whether the community has started to overfit to the idiosyncrasies of its labeling procedure. We therefore devel
In this paper, we propose QACE, a new metric based on Question Answering for Caption Evaluation. QACE generates questions on the evaluated caption and checks its content by asking the questions on either the reference caption or the source image. We