ترغب بنشر مسار تعليمي؟ اضغط هنا

A Deep Learning Approach to Object Affordance Segmentation

313   0   0.0 ( 0 )
 نشر من قبل Spyridon Thermos
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning to understand and infer object functionalities is an important step towards robust visual intelligence. Significant research efforts have recently focused on segmenting the object parts that enable specific types of human-object interaction, the so-called object affordances. However, most works treat it as a static semantic segmentation problem, focusing solely on object appearance and relying on strong supervision and object detection. In this paper, we propose a novel approach that exploits the spatio-temporal nature of human-object interaction for affordance segmentation. In particular, we design an autoencoder that is trained using ground-truth labels of only the last frame of the sequence, and is able to infer pixel-wise affordance labels in both videos and static images. Our model surpasses the need for object labels and bounding boxes by using a soft-attention mechanism that enables the implicit localization of the interaction hotspot. For evaluation purposes, we introduce the SOR3D-AFF corpus, which consists of human-object interaction sequences and supports 9 types of affordances in terms of pixel-wise annotation, covering typical manipulations of tool-like objects. We show that our model achieves competitive results compared to strongly supervised methods on SOR3D-AFF, while being able to predict affordances for similar unseen objects in two affordance image-only datasets.

قيم البحث

اقرأ أيضاً

It is well-established by cognitive neuroscience that human perception of objects constitutes a complex process, where object appearance information is combined with evidence about the so-called object affordances, namely the types of actions that hu mans typically perform when interacting with them. This fact has recently motivated the sensorimotor approach to the challenging task of automatic object recognition, where both information sources are fused to improve robustness. In this work, the aforementioned paradigm is adopted, surpassing current limitations of sensorimotor object recognition research. Specifically, the deep learning paradigm is introduced to the problem for the first time, developing a number of novel neuro-biologically and neuro-physiologically inspired architectures that utilize state-of-the-art neural networks for fusing the available information sources in multiple ways. The proposed methods are evaluated using a large RGB-D corpus, which is specifically collected for the task of sensorimotor object recognition and is made publicly available. Experimental results demonstrate the utility of affordance information to object recognition, achieving an up to 29% relative error reduction by its inclusion.
This paper presents a computational model of concept learning using Bayesian inference for a grammatically structured hypothesis space, and test the model on multisensory (visual and haptics) recognition of 3D objects. The study is performed on a set of artificially generated 3D objects known as fribbles, which are complex, multipart objects with categorical structures. The goal of this work is to develop a working multisensory representational model that integrates major themes on concepts and concepts learning from the cognitive science literature. The model combines the representational power of a probabilistic generative grammar with the inferential power of Bayesian induction.
Both high-level and high-resolution feature representations are of great importance in various visual understanding tasks. To acquire high-resolution feature maps with high-level semantic information, one common strategy is to adopt dilated convoluti ons in the backbone networks to extract high-resolution feature maps, such as the dilatedFCN-based methods for semantic segmentation. However, due to many convolution operations are conducted on the high-resolution feature maps, such methods have large computational complexity and memory consumption. In this paper, we propose one novel holistically-guided decoder which is introduced to obtain the high-resolution semantic-rich feature maps via the multi-scale features from the encoder. The decoding is achieved via novel holistic codeword generation and codeword assembly operations, which take advantages of both the high-level and low-level features from the encoder features. With the proposed holistically-guided decoder, we implement the EfficientFCN architecture for semantic segmentation and HGD-FPN for object detection and instance segmentation. The EfficientFCN achieves comparable or even better performance than state-of-the-art methods with only 1/3 of their computational costs for semantic segmentation on PASCAL Context, PASCAL VOC, ADE20K datasets. Meanwhile, the proposed HGD-FPN achieves $>2%$ higher mean Average Precision (mAP) when integrated into several object detection frameworks with ResNet-50 encoding backbones.
Although deep convolutional neural networks(CNNs) have achieved remarkable results on object detection and segmentation, pre- and post-processing steps such as region proposals and non-maximum suppression(NMS), have been required. These steps result in high computational complexity and sensitivity to hyperparameters, e.g. thresholds for NMS. In this work, we propose a novel end-to-end trainable deep neural network architecture, which consists of convolutional and recurrent layers, that generates the correct number of object instances and their bounding boxes (or segmentation masks) given an image, using only a single network evaluation without any pre- or post-processing steps. We have tested on detecting digits in multi-digit images synthesized using MNIST, automatically segmenting digits in these images, and detecting cars in the KITTI benchmark dataset. The proposed approach outperforms a strong CNN baseline on the synthesized digits datasets and shows promising results on KITTI car detection.
We investigate a principle way to progressively mine discriminative object regions using classification networks to address the weakly-supervised semantic segmentation problems. Classification networks are only responsive to small and sparse discrimi native regions from the object of interest, which deviates from the requirement of the segmentation task that needs to localize dense, interior and integral regions for pixel-wise inference. To mitigate this gap, we propose a new adversarial erasing approach for localizing and expanding object regions progressively. Starting with a single small object region, our proposed approach drives the classification network to sequentially discover new and complement object regions by erasing the current mined regions in an adversarial manner. These localized regions eventually constitute a dense and complete object region for learning semantic segmentation. To further enhance the quality of the discovered regions by adversarial erasing, an online prohibitive segmentation learning approach is developed to collaborate with adversarial erasing by providing auxiliary segmentation supervision modulated by the more reliable classification scores. Despite its apparent simplicity, the proposed approach achieves 55.0% and 55.7% mean Intersection-over-Union (mIoU) scores on PASCAL VOC 2012 val and test sets, which are the new state-of-the-arts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا