ترغب بنشر مسار تعليمي؟ اضغط هنا

A Concept Learning Approach to Multisensory Object Perception

258   0   0.0 ( 0 )
 نشر من قبل Ifeoma Nwogu
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a computational model of concept learning using Bayesian inference for a grammatically structured hypothesis space, and test the model on multisensory (visual and haptics) recognition of 3D objects. The study is performed on a set of artificially generated 3D objects known as fribbles, which are complex, multipart objects with categorical structures. The goal of this work is to develop a working multisensory representational model that integrates major themes on concepts and concepts learning from the cognitive science literature. The model combines the representational power of a probabilistic generative grammar with the inferential power of Bayesian induction.



قيم البحث

اقرأ أيضاً

381 - Yapeng Tian , Dingzeyu Li , 2020
In this paper, we introduce a new problem, named audio-visual video parsing, which aims to parse a video into temporal event segments and label them as either audible, visible, or both. Such a problem is essential for a complete understanding of the scene depicted inside a video. To facilitate exploration, we collect a Look, Listen, and Parse (LLP) dataset to investigate audio-visual video parsing in a weakly-supervised manner. This task can be naturally formulated as a Multimodal Multiple Instance Learning (MMIL) problem. Concretely, we propose a novel hybrid attention network to explore unimodal and cross-modal temporal contexts simultaneously. We develop an attentive MMIL pooling method to adaptively explore useful audio and visual content from different temporal extent and modalities. Furthermore, we discover and mitigate modality bias and noisy label issues with an individual-guided learning mechanism and label smoothing technique, respectively. Experimental results show that the challenging audio-visual video parsing can be achieved even with only video-level weak labels. Our proposed framework can effectively leverage unimodal and cross-modal temporal contexts and alleviate modality bias and noisy labels problems.
Learning to understand and infer object functionalities is an important step towards robust visual intelligence. Significant research efforts have recently focused on segmenting the object parts that enable specific types of human-object interaction, the so-called object affordances. However, most works treat it as a static semantic segmentation problem, focusing solely on object appearance and relying on strong supervision and object detection. In this paper, we propose a novel approach that exploits the spatio-temporal nature of human-object interaction for affordance segmentation. In particular, we design an autoencoder that is trained using ground-truth labels of only the last frame of the sequence, and is able to infer pixel-wise affordance labels in both videos and static images. Our model surpasses the need for object labels and bounding boxes by using a soft-attention mechanism that enables the implicit localization of the interaction hotspot. For evaluation purposes, we introduce the SOR3D-AFF corpus, which consists of human-object interaction sequences and supports 9 types of affordances in terms of pixel-wise annotation, covering typical manipulations of tool-like objects. We show that our model achieves competitive results compared to strongly supervised methods on SOR3D-AFF, while being able to predict affordances for similar unseen objects in two affordance image-only datasets.
The study of object representations in computer vision has primarily focused on developing representations that are useful for image classification, object detection, or semantic segmentation as downstream tasks. In this work we aim to learn object r epresentations that are useful for control and reinforcement learning (RL). To this end, we introduce Transporter, a neural network architecture for discovering concise geometric object representations in terms of keypoints or image-space coordinates. Our method learns from raw video frames in a fully unsupervised manner, by transporting learnt image features between video frames using a keypoint bottleneck. The discovered keypoints track objects and object parts across long time-horizons more accurately than recent similar methods. Furthermore, consistent long-term tracking enables two notable results in control domains -- (1) using the keypoint co-ordinates and corresponding image features as inputs enables highly sample-efficient reinforcement learning; (2) learning to explore by controlling keypoint locations drastically reduces the search space, enabling deep exploration (leading to states unreachable through random action exploration) without any extrinsic rewards.
Autonomous vehicles and mobile robotic systems are typically equipped with multiple sensors to provide redundancy. By integrating the observations from different sensors, these mobile agents are able to perceive the environment and estimate system st ates, e.g. locations and orientations. Although deep learning approaches for multimodal odometry estimation and localization have gained traction, they rarely focus on the issue of robust sensor fusion - a necessary consideration to deal with noisy or incomplete sensor observations in the real world. Moreover, current deep odometry models also suffer from a lack of interpretability. To this extent, we propose SelectFusion, an end-to-end selective sensor fusion module which can be applied to useful pairs of sensor modalities such as monocular images and inertial measurements, depth images and LIDAR point clouds. During prediction, the network is able to assess the reliability of the latent features from different sensor modalities and estimate both trajectory at scale and global pose. In particular, we propose two fusion modules based on different attention strategies: deterministic soft fusion and stochastic hard fusion, and we offer a comprehensive study of the new strategies compared to trivial direct fusion. We evaluate all fusion strategies in both ideal conditions and on progressively degraded datasets that present occlusions, noisy and missing data and time misalignment between sensors, and we investigate the effectiveness of the different fusion strategies in attending the most reliable features, which in itself, provides insights into the operation of the various models.
This paper introduces a spiking hierarchical model for object recognition which utilizes the precise timing information inherently present in the output of biologically inspired asynchronous Address Event Representation (AER) vision sensors. The asyn chronous nature of these systems frees computation and communication from the rigid predetermined timing enforced by system clocks in conventional systems. Freedom from rigid timing constraints opens the possibility of using true timing to our advantage in computation. We show not only how timing can be used in object recognition, but also how it can in fact simplify computation. Specifically, we rely on a simple temporal-winner-take-all rather than more computationally intensive synchronous operations typically used in biologically inspired neural networks for object recognition. This approach to visual computation represents a major paradigm shift from conventional clocked systems and can find application in other sensory modalities and computational tasks. We showcase effectiveness of the approach by achieving the highest reported accuracy to date (97.5%$pm$3.5%) for a previously published four class card pip recognition task and an accuracy of 84.9%$pm$1.9% for a new more difficult 36 class character recognition task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا