ﻻ يوجد ملخص باللغة العربية
We investigate a principle way to progressively mine discriminative object regions using classification networks to address the weakly-supervised semantic segmentation problems. Classification networks are only responsive to small and sparse discriminative regions from the object of interest, which deviates from the requirement of the segmentation task that needs to localize dense, interior and integral regions for pixel-wise inference. To mitigate this gap, we propose a new adversarial erasing approach for localizing and expanding object regions progressively. Starting with a single small object region, our proposed approach drives the classification network to sequentially discover new and complement object regions by erasing the current mined regions in an adversarial manner. These localized regions eventually constitute a dense and complete object region for learning semantic segmentation. To further enhance the quality of the discovered regions by adversarial erasing, an online prohibitive segmentation learning approach is developed to collaborate with adversarial erasing by providing auxiliary segmentation supervision modulated by the more reliable classification scores. Despite its apparent simplicity, the proposed approach achieves 55.0% and 55.7% mean Intersection-over-Union (mIoU) scores on PASCAL VOC 2012 val and test sets, which are the new state-of-the-arts.
It has been well demonstrated that adversarial examples, i.e., natural images with visually imperceptible perturbations added, generally exist for deep networks to fail on image classification. In this paper, we extend adversarial examples to semanti
Camouflaged object segmentation (COS) aims to identify objects that are perfectly assimilate into their surroundings, which has a wide range of valuable applications. The key challenge of COS is that there exist high intrinsic similarities between th
Despite great progress in supervised semantic segmentation,a large performance drop is usually observed when deploying the model in the wild. Domain adaptation methods tackle the issue by aligning the source domain and the target domain. However, mos
We propose a novel method for semantic segmentation, the task of labeling each pixel in an image with a semantic class. Our method combines the advantages of the two main competing paradigms. Methods based on region classification offer proper spatia
Acquiring sufficient ground-truth supervision to train deep visual models has been a bottleneck over the years due to the data-hungry nature of deep learning. This is exacerbated in some structured prediction tasks, such as semantic segmentation, whi