ﻻ يوجد ملخص باللغة العربية
In this note we illustrate how common matrix approximation methods, such as random projection and random sampling, yield projection-cost-preserving sketches, as introduced in [FSS13, CEM+15]. A projection-cost-preserving sketch is a matrix approximation which, for a given parameter $k$, approximately preserves the distance of the target matrix to all $k$-dimensional subspaces. Such sketches have applications to scalable algorithms for linear algebra, data science, and machine learning. Our goal is to simplify the presentation of proof techniques introduced in [CEM+15] and [CMM17] so that they can serve as a guide for future work. We also refer the reader to [CYD19], which gives a similar simplified exposition of the proof covered in Section 2.
We introduce Density sketches (DS): a succinct online summary of the data distribution. DS can accurately estimate point wise probability density. Interestingly, DS also provides a capability to sample unseen novel data from the underlying data distr
Data structures that allow efficient distance estimation (distance oracles, distance sketches, etc.) have been extensively studied, and are particularly well studied in centralized models and classical distributed models such as CONGEST. We initiate
The shift distance $mathsf{sh}(S_1,S_2)$ between two strings $S_1$ and $S_2$ of the same length is defined as the minimum Hamming distance between $S_1$ and any rotation (cyclic shift) of $S_2$. We study the problem of sketching the shift distance, w
Recently, Hierarchical Clustering (HC) has been considered through the lens of optimization. In particular, two maximization objectives have been defined. Moseley and Wang defined the emph{Revenue} objective to handle similarity information given by
A graph is a data structure composed of dots (i.e. vertices) and lines (i.e. edges). The dots and lines of a graph can be organized into intricate arrangements. The ability for a graph to denote objects and their relationships to one another allow fo