ﻻ يوجد ملخص باللغة العربية
A graph is a data structure composed of dots (i.e. vertices) and lines (i.e. edges). The dots and lines of a graph can be organized into intricate arrangements. The ability for a graph to denote objects and their relationships to one another allow for a surprisingly large number of things to be modeled as a graph. From the dependencies that link software packages to the wood beams that provide the framing to a house, most anything has a corresponding graph representation. However, just because it is possible to represent something as a graph does not necessarily mean that its graph representation will be useful. If a modeler can leverage the plethora of tools and algorithms that store and process graphs, then such a mapping is worthwhile. This article explores the world of graphs in computing and exposes situations in which graphical models are beneficial.
In this note we illustrate how common matrix approximation methods, such as random projection and random sampling, yield projection-cost-preserving sketches, as introduced in [FSS13, CEM+15]. A projection-cost-preserving sketch is a matrix approximat
Let $P$ be a set (called points), $Q$ be a set (called queries) and a function $ f:Ptimes Qto [0,infty)$ (called cost). For an error parameter $epsilon>0$, a set $Ssubseteq P$ with a emph{weight function} $w:P rightarrow [0,infty)$ is an $epsilon$-co
We study the problem of finding a mapping $f$ from a set of points into the real line, under ordinal triple constraints. An ordinal constraint for a triple of points $(u,v,w)$ asserts that $|f(u)-f(v)|<|f(u)-f(w)|$. We present an approximation algori
Cathodoluminescence measurements on single InGaN/GaN quantum dots (QDs) are reported. Complex spectra with up to five emission lines per QD are observed. The lines are polarized along the orthogonal crystal directions [1 1 -2 0] and [-1 1 0 0]. Reali
Systematic constructions of MDS self-dual codes is widely concerned. In this paper, we consider the constructions of MDS Euclidean self-dual codes from short length. Indeed, the exact constructions of MDS Euclidean self-dual codes from short length (