ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine learning clustering technique applied to powder X-ray diffraction patterns to distinguish alloy substitutions

103   0   0.0 ( 0 )
 نشر من قبل Keishu Utimula
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We applied the clustering technique using DTW (dynamic time wrapping) analysis to XRD (X-ray diffraction) spectrum patterns in order to identify the microscopic structures of substituents introduced in the main phase of magnetic alloys. The clustering is found to perform well to identify the concentrations of the substituents with successful rates (around 90%). The sufficient performance is attributed to the nature of DTW processing to filter out irrelevant informations such as the peak intensities (due to the incontrollability of diffraction conditions in polycrystalline samples) and the uniform shift of peak positions (due to the thermal expansions of lattices).

قيم البحث

اقرأ أيضاً

It would be a natural expectation that only major peaks, not all of them, would make an important contribution to the characterization of the XRD pattern. We developed a scheme that can identify which peaks are relavant to what extent by using auto-e ncoder technique to construct a feature space for the XRD peak patterns. Individual XRD patterns are projected onto a single point in the two-dimensional feature space constructed using the method. If the point is significantly shifted when a peak of interest is masked, then we can say the peak is relevant for the characterization represented by the point on the space. In this way, we can formulate the relevancy quantitatively. By using this scheme, we actually found such a peak with a significant peak intensity but low relevancy in the characterization of the structure. The peak is not easily explained by the physical viewpoint such as the higher-order peaks from the same plane index, being a heuristic finding by the power of machine-learning.
Filtered diode array spectrometers are routinely employed to infer the temporal evolution of spectral power from x-ray sources, but uniquely extracting spectral content from a finite set of broad, spectrally overlapping channel spectral sensitivities is decidedly nontrivial in these underdetermined systems. We present the use of genetic algorithms to reconstruct a probabilistic spectral intensity distribution and compare to the traditional approach most commonly found in literature. Unlike many of the previously published models, spectral reconstructions from this approach are neither limited by basis functional forms, nor do they require a priori spectral knowledge. While the original intent of such measurements was to diagnose the temporal evolution of spectral power from quasi-blackbody radiation sources, where the exact details of spectral content was not thought to be crucial, we demonstrate that this new technique can greatly enhance the utility of the diagnostic by providing more physical spectra and improved robustness to hardware configuration for even strongly non-Planckian distributions.
X-ray free-electron lasers (XFELs) are the only sources currently able to produce bright few-fs pulses with tunable photon energies from 100 eV to more than 10 keV. Due to the stochastic SASE operating principles and other technical issues the output pulses are subject to large fluctuations, making it necessary to characterize the x-ray pulses on every shot for data sorting purposes. We present a technique that applies machine learning tools to predict x-ray pulse properties using simple electron beam and x-ray parameters as input. Using this technique at the Linac Coherent Light Source (LCLS), we report mean errors below 0.3 eV for the prediction of the photon energy at 530 eV and below 1.6 fs for the prediction of the delay between two x-ray pulses. We also demonstrate spectral shape prediction with a mean agreement of 97%. This approach could potentially be used at the next generation of high-repetition-rate XFELs to provide accurate knowledge of complex x-ray pulses at the full repetition rate.
Abstract Machine learning models, trained on data from ab initio quantum simulations, are yielding molecular dynamics potentials with unprecedented accuracy. One limiting factor is the quantity of available training data, which can be expensive to ob tain. A quantum simulation often provides all atomic forces, in addition to the total energy of the system. These forces provide much more information than the energy alone. It may appear that training a model to this large quantity of force data would introduce significant computational costs. Actually, training to all available force data should only be a few times more expensive than training to energies alone. Here, we present a new algorithm for efficient force training, and benchmark its accuracy by training to forces from real-world datasets for organic chemistry and bulk aluminum.
The discovery of topological features of quantum states plays an important role in modern condensed matter physics and various artificial systems. Due to the absence of local order parameters, the detection of topological quantum phase transitions re mains a challenge. Machine learning may provide effective methods for identifying topological features. In this work, we show that the unsupervised manifold learning can successfully retrieve topological quantum phase transitions in momentum and real space. Our results show that the Chebyshev distance between two data points sharpens the characteristic features of topological quantum phase transitions in momentum space, while the widely used Euclidean distance is in general suboptimal. Then a diffusion map or isometric map can be applied to implement the dimensionality reduction, and to learn about topological quantum phase transitions in an unsupervised manner. We demonstrate this method on the prototypical Su-Schrieffer-Heeger (SSH) model, the Qi-Wu-Zhang (QWZ) model, and the quenched SSH model in momentum space, and further provide implications and demonstrations for learning in real space, where the topological invariants could be unknown or hard to compute. The interpretable good performance of our approach shows the capability of manifold learning, when equipped with a suitable distance metric, in exploring topological quantum phase transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا