ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of two-dimensional anisotropic superconductivity at KTaO$_3$ (111) interfaces

79   0   0.0 ( 0 )
 نشر من قبل Anand Bhattacharya
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The unique electronic structure found at interfaces between materials can allow unconventional quantum states to emerge. Here we observe superconductivity in electron gases formed at interfaces between (111) oriented KTaO$_3$ and insulating overlayers of either EuO or LaAlO$_3$. The superconducting transition temperature, approaching 2.2 K, is about one order of magnitude higher than that of the LaAlO$_3$/SrTiO$_3$ system. Strikingly, similar electron gases at (001) KTaO$_3$ interfaces remain normal down to 25 mK. The critical field and current-voltage measurements indicate that the superconductivity is two dimensional. Higher mobility EuO/KTaO$_3$ (111) samples show a large in-plane anisotropy in transport properties at low temperatures prior to onset of superconductivity, suggesting the emergence of a stripe like phase where the superconductivity is nearly homogeneous in one direction, but strongly modulated in the other.

قيم البحث

اقرأ أيضاً

Oxide interfaces exhibit a broad range of physical effects stemming from broken inversion symmetry. In particular, they can display non-reciprocal phenomena when time reversal symmetry is also broken, e.g., by the application of a magnetic field. Exa mples include the direct and inverse Edelstein effects (DEE, IEE) that allow the interconversion between spin currents and charge currents. The DEE and IEE have been investigated in interfaces based on the perovskite SrTiO$_3$ (STO), albeit in separate studies focusing on one or the other. The demonstration of these effects remains mostly elusive in other oxide interface systems despite their blossoming in the last decade. Here, we report the observation of both the DEE and IEE in a new interfacial two-dimensional electron gas (2DEG) based on the perovskite oxide KTaO$_3$. We generate 2DEGs by the simple deposition of Al metal onto KTaO$_3$ single crystals, characterize them by angle-resolved photoemission spectroscopy and magnetotransport, and demonstrate the DEE through unidirectional magnetoresistance and the IEE by spin-pumping experiments. We compare the spin-charge interconversion efficiency with that of STO-based interfaces, relate it to the 2DEG electronic structure, and give perspectives for the implementation of KTaO$_3$ 2DEGs into spin-orbitronic devices.
Just like insulators can host topological Dirac states at their edges, superconductors can also exhibit topological phases characterized by Majorana edge states. Remarkable zero-energy states have been recently observed at the two ends of proximity i nduced superconducting wires, and were interpreted as localized Majorana end states in one-dimensional (1D) topological superconductor. By contrast, propagating Majorana states should exist at the 1D edges of two-dimensional (2D) topological superconductors. Here we report the direct observation of dispersive in-gap states surrounding topological superconducting domains made of a single atomic layer of Pb covering magnetic islands of Co/Si(111). We interpret the observed continuous dispersion across the superconducting gap in terms of a spatial topological transition accompanied by a chiral edge mode and residual gaped helical edge states. Our experimental approach enables the engineering and control of a large variety of novel quantum phases. This opens new horizons in the field of quantum materials and quantum electronics where the magnetization of the domains could be used as a control parameter for the manipulation of topological states.
The conducting gas that forms at the interface between LaAlO$_3$ and SrTiO$_3$ has proven to be a fertile playground for a wide variety of physical phenomena. The bulk of previous research has focused on the (001) and (110) crystal orientations. Here we report detailed measurements of the low-temperature electrical properties of (111) LAO/STO interface samples. We find that the low-temperature electrical transport properties are highly anisotropic, in that they differ significantly along two mutually orthogonal crystal orientations at the interface. While anisotropy in the resistivity has been reported in some (001) samples and in (110) samples, the anisotropy in the (111) samples reported here is much stronger, and also manifests itself in the Hall coefficient as well as the capacitance. In addition, the anisotropy is not present at room temperature and at liquid nitrogen temperatures, but only at liquid helium temperatures and below. The anisotropy is accentuated by exposure to ultraviolet light, which disproportionately affects transport along one surface crystal direction. Furthermore, analysis of the low-temperature Hall coefficient and the capacitance as a function of back gate voltage indicates that in addition to electrons, holes contribute to the electrical transport.
We investigate the possibility of multi-band superconductivity in SrTiO$_{3}$ films and interfaces using a two-dimensional two-band model. In the undoped compound, one of the bands is occupied whereas the other is empty. As the chemical potential shi fts due to doping by negative charge carriers or application of an electric field, the second band becomes occupied, giving rise to a strong enhancement of the transition temperature and a sharp feature in the gap functions, which is manifested in the local density of states spectrum. By comparing our results with tunneling experiments in Nb-doped SrTiO$_{3}$, we find that intra-band pairing dominates over inter-band pairing, unlike other known multi-band superconductors. Given the similarities with the value of the transition temperature and with the band structure of LaAlO$_{3}$/SrTiO$_{3}$ heterostructures, we speculate that the superconductivity observed in SrTiO$_{3}$ interfaces may be similar in nature to that of bulk SrTiO$_{3}$, involving multiple bands with distinct electronic occupations.
Following the discovery of superconductivity in quasi-one-dimensional K$_2$Cr$_3$As$_3$ containing [(Cr$_3$As$_3$)$^{2-}$]$_{infty}$ chains [J. K. Bao et al., arXiv: 1412.0067 (2014)], we succeeded in synthesizing an analogous compound, Rb$_2$Cr$_3$A s$_3$, which also crystallizes in a hexagonal lattice. The replacement of K by Rb results in an expansion of $a$ axis by 3%, indicating a weaker interchain coupling in Rb$_2$Cr$_3$As$_3$. Bulk superconductivity emerges at 4.8 K, above which the normal-state resistivity shows a linear temperature dependence up to 35 K. The estimated upper critical field at zero temperature exceeds the Pauli paramagnetic limit by a factor of two. Furthermore, the electronic specific-heat coefficient extrapolated to zero temperature in the mixed state increases with $sqrt{H}$, suggesting existence of nodes in the superconducting energy gap. Hence Rb$_2$Cr$_3$As$_3$ manifests itself as another example of unconventional superconductor in the Cr$_3$As$_3$-chain based system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا