ﻻ يوجد ملخص باللغة العربية
Oxide interfaces exhibit a broad range of physical effects stemming from broken inversion symmetry. In particular, they can display non-reciprocal phenomena when time reversal symmetry is also broken, e.g., by the application of a magnetic field. Examples include the direct and inverse Edelstein effects (DEE, IEE) that allow the interconversion between spin currents and charge currents. The DEE and IEE have been investigated in interfaces based on the perovskite SrTiO$_3$ (STO), albeit in separate studies focusing on one or the other. The demonstration of these effects remains mostly elusive in other oxide interface systems despite their blossoming in the last decade. Here, we report the observation of both the DEE and IEE in a new interfacial two-dimensional electron gas (2DEG) based on the perovskite oxide KTaO$_3$. We generate 2DEGs by the simple deposition of Al metal onto KTaO$_3$ single crystals, characterize them by angle-resolved photoemission spectroscopy and magnetotransport, and demonstrate the DEE through unidirectional magnetoresistance and the IEE by spin-pumping experiments. We compare the spin-charge interconversion efficiency with that of STO-based interfaces, relate it to the 2DEG electronic structure, and give perspectives for the implementation of KTaO$_3$ 2DEGs into spin-orbitronic devices.
SrTiO$_3$-based two-dimensional electron gases (2DEGs) can be formed through the deposition of epitaxial oxides like LaAlO$_3$ or of reactive metals such as Al. Such 2DEGs possess a finite Rashba spin-orbit coupling that has recently been harnessed t
We measure spin-orbit torques (SOTs) in a unique model system of all-epitaxial ferrite/Pt bilayers to gain insights into charge-spin interconversion in Pt. With negligible electronic conduction in the insulating ferrite, the crystalline Pt film acts
The unique electronic structure found at interfaces between materials can allow unconventional quantum states to emerge. Here we observe superconductivity in electron gases formed at interfaces between (111) oriented KTaO$_3$ and insulating overlayer
We develop a microscopic theory of spin relaxation of a two-dimensional electron gas in quantum wells with anisotropic electron scattering. Both precessional and collision-dominated regimes of spin dynamics are studied. It is shown that, in quantum w
Spin-orbit torque enables electrical control of the magnetic state of ferromagnets or antiferromagnets. In this work we consider the spin-orbit torque in the 2-d Van der Waals antiferromagnetic bilayer CrI$_3$, in the $n$-doped regime. In the purely