ﻻ يوجد ملخص باللغة العربية
We investigate the possibility of multi-band superconductivity in SrTiO$_{3}$ films and interfaces using a two-dimensional two-band model. In the undoped compound, one of the bands is occupied whereas the other is empty. As the chemical potential shifts due to doping by negative charge carriers or application of an electric field, the second band becomes occupied, giving rise to a strong enhancement of the transition temperature and a sharp feature in the gap functions, which is manifested in the local density of states spectrum. By comparing our results with tunneling experiments in Nb-doped SrTiO$_{3}$, we find that intra-band pairing dominates over inter-band pairing, unlike other known multi-band superconductors. Given the similarities with the value of the transition temperature and with the band structure of LaAlO$_{3}$/SrTiO$_{3}$ heterostructures, we speculate that the superconductivity observed in SrTiO$_{3}$ interfaces may be similar in nature to that of bulk SrTiO$_{3}$, involving multiple bands with distinct electronic occupations.
Nb-doped SrTiO$_{3}$ epitaxial thin films have been prepared on (001) SrTiO$_{3}$ substrates using pulsed laser deposition. A high substrate temperature ($>1000^{circ}{C}$) was found to be necessary to achieve 2-dimensional growth. Atomic force micro
SrTiO$_3$ is an incipient ferroelectric on the verge of a polar instability, which is avoided at low temperatures by quantum fluctuations. Within this unusual quantum paraelectric phase, superconductivity persists despite extremely dilute carrier den
In multiorbital materials, superconductivity can exhibit new exotic forms that include several coupled condensates. In this context, quantum confinement in two-dimensional superconducting oxide interfaces offers new degrees of freedom to engineer the
The time-resolved photoconductance of amorphous and crystalline LaAlO$_3$/SrTiO$_3$ interfaces, both hosting an interfacial 2-dimensional electron gas, is investigated under irradiation by variable-wavelengths, visible or ultraviolet photons. Unlike
The interface superconductivity in LaAlO$_{3}$-SrTiO$_{3}$ heterostructures reveals a non-monotonic behavior of the critical temperature as a function of the two-dimensional density of charge carriers. We develop a theoretical description of interfac