ترغب بنشر مسار تعليمي؟ اضغط هنا

Interfacial-hybridization-modified Ir Ferromagnetism and Electronic Structure in LaMnO$_3$/SrIrO$_3$ Superlattices

85   0   0.0 ( 0 )
 نشر من قبل Yujun Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Artificially fabricated 3$d$/5$d$ superlattices (SLs) involve both strong electron correlation and spin-orbit coupling in one material by means of interfacial 3$d$-5$d$ coupling, whose mechanism remains mostly unexplored. In this work we investigated the mechanism of interfacial coupling in LaMnO$_3$/SrIrO$_3$ SLs by several spectroscopic approaches. Hard x-ray absorption, magnetic circular dichroism and photoemission spectra evidence the systematic change of the Ir ferromagnetism and the electronic structure with the change of the SL repetition period. First-principles calculations further reveal the mechanism of the SL-period dependence of the interfacial electronic structure and the local properties of the Ir moments, confirming that the formation of Ir-Mn molecular orbital is responsible for the interfacial coupling effects. The SL-period dependence of the ratio between spin and orbital components of the Ir magnetic moments can be attributed to the realignment of electron spin during the formation of the interfacial molecular orbital. Our results clarify the nature of interfacial coupling in this prototypical 3$d$/5$d$ SL system and the conclusion will shed light on the study of other strongly correlated and spin-orbit coupled oxide hetero-interfaces.



قيم البحث

اقرأ أيضاً

We observe interfacial ferromagnetism in superlattices of the paramagnetic metal LaNiO3 and the antiferromagnetic insulator CaMnO3. LaNiO3 exhibits a thickness dependent metal-insulator transition and we find the emergence of ferromagnetism to be coi ncident with the conducting state of LaNiO3. That is, only superlattices in which the LaNiO3 layers are metallic exhibit ferromagnetism. Using several magnetic probes, we have determined that the ferromagnetism arises in a single unit cell of CaMnO3 at the interface. Together these results suggest that ferromagnetism can be attributed to a double exchange interaction among Mn ions mediated by the adjacent itinerant metal.
The 5$d$ based SrIrO$_3$ represents prototype example of nonmagnetic correlated metal which mainly originates from a combined effect of spin-orbit coupling, lattice dimensionality and crystal structure. Therefore, tuning of these parameters results i n diverse physical properties in this material. Here, we study the structural, magnetic and electrical transport behavior in epitaxial SrIrO$_3$ film ($sim$ 40 nm) grown on SrTiO$_3$ substrate. Opposed to bulk material, the SrIrO$_3$ film exhibits a ferromagnetic ordering at low temperature below $sim$ 20 K. The electrical transport data indicate an insulating behavior where the nature of charge transport follows Motts variable-range-hopping model. A positive magnetoresistance is recorded at 2 K which has correlation with magnetic moment. We further observe a nonlinear Hall effect at low temperature ($<$ 20 K) which arises due to an anomalous component of Hall effect. An anisotropic behavior of both magnetoresistance and Hall effect has been evidenced at low temperature which coupled with anomalous Hall effect indicate the development of ferromagnetic ordering. We believe that an enhanced (local) structural distortion caused by lattice strain at low temperatures induces ferromagnetic ordering, thus showing structural instability plays vital role to tune the physical properties in SrIrO$_3$.
We have performed ab initio calculations within the LDA+U method in the multilayered system (LaMnO$_3$)$_{2n}$ / (SrMnO$_3$)$_n$. Our results suggest a charge-ordered state that alternates Mn$^{3+}$ and Mn$^{4+}$ cations in a checkerboard in-plane pa ttern is developed at the interfacial layer, leading to a gap opening. Such an interfacial charge-ordered situation would be the energetically favored reconstruction between LaMnO$_3$ and SrMnO$_3$. This helps understanding the insulating behavior observed experimentally in these multilayers at intermediate values of $n$, whose origin is known to be due to some interfacial mechanism.
Perovskite SrRuO$_3$ is a prototypical itinerant ferromagnet which allows interface engineering of its electronic and magnetic properties. We report synthesis and investigation of atomically flat artificial multilayers of SrRuO$_3$ with the spin-orbi t semimetal SrIrO$_3$ in combination with band-structure calculations with a Hubbard $U$ term and topological analysis. They reveal an electronic reconstruction and emergence of flat Ru-4d$_{xz}$ bands near the interface, ferromagnetic interlayer coupling and negative Berry-curvature contribution to the anomalous Hall effect. We analyze the Hall effect and magnetoresistance measurements as a function of the field angle from out of plane towards in-plane orientation (either parallel or perpendicular to the current direction) by a two-channel model. The magnetic easy direction is tilted by about $20^circ$ from the sample normal for low magnetic fields, rotating towards the out-of-plane direction by increasing fields. Fully strained epitaxial growth enables a strong anisotropy of magnetoresistance. An additional Hall effect contribution, not accounted for by the two-channel model is compatible with stable skyrmions only up to a critical angle of roughly $45^circ$ from the sample normal. Within about $20^circ$ from the thin film plane an additional peak-like contribution to the Hall effect suggests the formation of a non-trivial spin structure.
Motivated by recent experiments, we use the $+U$ extension of the generalized gradient approximation to density functional theory to study superlattices composed of alternating layers of LaNiO$_3$ and LaMnO$_3$. For comparison we also study a rocksal t ((111) double perovskite) structure and bulk LaNiO$_3$ and LaMnO$_3$. A Wannier function analysis indicates that band parameters are transferable from bulk to superlattice situations with the exception of the transition metal d-level energy, which has a contribution from the change in d-shell occupancy. The charge transfer from Mn to Ni is found to be moderate in the superlattice, indicating metallic behavior, in contrast to the insulating behavior found in recent experiments, while the rocksalt structure is found to be insulating with a large Mn-Ni charge transfer. We suggest a high density of cation antisite defects may account for the insulating behavior experimentally observed in short-period superlattices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا