ترغب بنشر مسار تعليمي؟ اضغط هنا

Low temperature ferromagnetism in perovskite SrIrO$_3$ films

99   0   0.0 ( 0 )
 نشر من قبل Ashim Kumar Pramanik Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 5$d$ based SrIrO$_3$ represents prototype example of nonmagnetic correlated metal which mainly originates from a combined effect of spin-orbit coupling, lattice dimensionality and crystal structure. Therefore, tuning of these parameters results in diverse physical properties in this material. Here, we study the structural, magnetic and electrical transport behavior in epitaxial SrIrO$_3$ film ($sim$ 40 nm) grown on SrTiO$_3$ substrate. Opposed to bulk material, the SrIrO$_3$ film exhibits a ferromagnetic ordering at low temperature below $sim$ 20 K. The electrical transport data indicate an insulating behavior where the nature of charge transport follows Motts variable-range-hopping model. A positive magnetoresistance is recorded at 2 K which has correlation with magnetic moment. We further observe a nonlinear Hall effect at low temperature ($<$ 20 K) which arises due to an anomalous component of Hall effect. An anisotropic behavior of both magnetoresistance and Hall effect has been evidenced at low temperature which coupled with anomalous Hall effect indicate the development of ferromagnetic ordering. We believe that an enhanced (local) structural distortion caused by lattice strain at low temperatures induces ferromagnetic ordering, thus showing structural instability plays vital role to tune the physical properties in SrIrO$_3$.



قيم البحث

اقرأ أيضاً

Electron-boson interaction is fundamental to a thorough understanding of various exotic properties emerging in many-body physics. In photoemission spectroscopy, photoelectron emission due to photon absorption would trigger diverse collective excitati ons in solids, including the emergence of phonons, magnons, electron-hole pairs, and plasmons, which naturally provides a reliable pathway to study electron-boson couplings. While fingerprints of electron-phonon/-magnon interactions in this state-of-the-art technique have been well investigated, much less is known about electron-plasmon coupling, and direct observation of the band renormalization solely due to electron-plasmon interactions is extremely challenging. Here by utilizing integrated oxide molecular-beam epitaxy and angle-resolved photoemission spectroscopy, we discover the long sought-after pure electron-plasmon coupling-induced low-lying plasmonic-polaron replica bands in epitaxial semimetallic SrIrO$_3$ films, in which the characteristic low carrier concentration and narrow bandwidth combine to provide a unique platform where the electron-plasmon interaction can be investigated kinematically in photoemission spectroscopy. This finding enriches the forms of electron band normalization on collective modes in solids and demonstrates that, to obtain a complete understanding of the quasiparticle dynamics in 5d electron systems, the electron-plasmon interaction should be considered on equal footing with the acknowledged electron-electron interaction and spin-orbit coupling.
Artificially fabricated 3$d$/5$d$ superlattices (SLs) involve both strong electron correlation and spin-orbit coupling in one material by means of interfacial 3$d$-5$d$ coupling, whose mechanism remains mostly unexplored. In this work we investigated the mechanism of interfacial coupling in LaMnO$_3$/SrIrO$_3$ SLs by several spectroscopic approaches. Hard x-ray absorption, magnetic circular dichroism and photoemission spectra evidence the systematic change of the Ir ferromagnetism and the electronic structure with the change of the SL repetition period. First-principles calculations further reveal the mechanism of the SL-period dependence of the interfacial electronic structure and the local properties of the Ir moments, confirming that the formation of Ir-Mn molecular orbital is responsible for the interfacial coupling effects. The SL-period dependence of the ratio between spin and orbital components of the Ir magnetic moments can be attributed to the realignment of electron spin during the formation of the interfacial molecular orbital. Our results clarify the nature of interfacial coupling in this prototypical 3$d$/5$d$ SL system and the conclusion will shed light on the study of other strongly correlated and spin-orbit coupled oxide hetero-interfaces.
We study ferromagnetic ordering and microscopic inhomogeneity in tensile strained LaCoO$_3$ using numerical simulations. We argue that both phenomena originate from effective superexchange interactions between atoms in the high-spin (HS) state mediat ed by the intermediate-spin excitations. We derive a model of the HS excitation as a bare atomic state dressed by electron and electron-hole fluctuations on the neighbor atoms. We construct a series of approximations to account for electron correlation effects responsible for HS fluctuations and magnetic exchange. The obtained amplitudes and directional dependence of magnetic couplings between the dressed HS states show a qualitative agreement with experimental observations and provide a new physical picture of LaCoO$_3$ films.
The thermodynamic properties of the ferromagnetic perovskite YTiO$_3$ are investigated by thermal expansion, magnetostriction, specific heat, and magnetization measurements. The low-temperature spin-wave contribution to the specific heat, as well as an Arrott plot of the magnetization in the vicinity of the Curie temperature $T_Csimeq27$ K, are consistent with a three-dimensional Heisenberg model of ferromagnetism. However, a magnetic contribution to the thermal expansion persists well above $T_C$, which contrasts with typical three-dimensional Heisenberg ferromagnets, as shown by a comparison with the corresponding model system EuS. The pressure dependences of $T_C$ and of the spontaneous moment $M_s$ are extracted using thermodynamic relationships. They indicate that ferromagnetism is strengthened by uniaxial pressures $mathbf{p}parallel mathbf{a}$ and is weakened by uniaxial pressures $mathbf{p}parallel mathbf{b},mathbf{c}$ and hydrostatic pressure. Our results show that the distortion along the $a$- and $b$-axes is further increased by the magnetic transition, confirming that ferromagnetism is favored by a large GdFeO$_3$-type distortion. The c-axis results however do not fit into this simple picture, which may be explained by an additional magnetoelastic effect, possibly related to a Jahn-Teller distortion.
The interplay of electronic correlations, multi-orbital excitations, and strong spin-orbit coupling is a fertile ground for new states of matter in quantum materials. Here, we report on a confocal Raman scattering study of momentum-resolved charge dy namics from a thin film of semimetallic perovskite $mathbf{SrIrO_3}$. We demonstrate that the charge dynamics, characterized by a broad continuum, is well described in terms of the marginal Fermi liquid phenomenology. In addition, over a wide temperature regime, the inverse scattering time is for all momenta close to the Planckian limit $mathbf{tau^{-1}_{hbar}=k_{rm B} T/hbar}$. Thus, $mathbf{SrIrO_3}$ is a semimetallic multi-band system that is as correlated as, for example, the cuprate superconductors. The usual challenge to resolve the charge dynamics in multi-band systems with very different mobilities is circumvented by taking advantage of the momentum space selectivity of polarized electronic Raman scattering. The Raman responses of both hole- and electron-pockets display an electronic continuum extending far beyond 1000icm ($sim$125 meV), much larger than allowed by the phase space for creating particle-hole pairs in a regular Fermi liquid. Analyzing this response in the framework of a memory function formalism, we are able to extract the frequency dependent scattering rate and mass enhancement factor of both types of charge carriers, which in turn allows us to determine the carrier-dependent mobilities and electrical resistivities. The results are well consistent with transport measurement and demonstrate the potential of this approach to investigate the charge dynamics in multi-band systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا