ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular dependence of Hall effect and magnetoresistance in SrRuO$_3$-SrIrO$_3$ heterostructures

141   0   0.0 ( 0 )
 نشر من قبل Philipp Gegenwart
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Perovskite SrRuO$_3$ is a prototypical itinerant ferromagnet which allows interface engineering of its electronic and magnetic properties. We report synthesis and investigation of atomically flat artificial multilayers of SrRuO$_3$ with the spin-orbit semimetal SrIrO$_3$ in combination with band-structure calculations with a Hubbard $U$ term and topological analysis. They reveal an electronic reconstruction and emergence of flat Ru-4d$_{xz}$ bands near the interface, ferromagnetic interlayer coupling and negative Berry-curvature contribution to the anomalous Hall effect. We analyze the Hall effect and magnetoresistance measurements as a function of the field angle from out of plane towards in-plane orientation (either parallel or perpendicular to the current direction) by a two-channel model. The magnetic easy direction is tilted by about $20^circ$ from the sample normal for low magnetic fields, rotating towards the out-of-plane direction by increasing fields. Fully strained epitaxial growth enables a strong anisotropy of magnetoresistance. An additional Hall effect contribution, not accounted for by the two-channel model is compatible with stable skyrmions only up to a critical angle of roughly $45^circ$ from the sample normal. Within about $20^circ$ from the thin film plane an additional peak-like contribution to the Hall effect suggests the formation of a non-trivial spin structure.



قيم البحث

اقرأ أيضاً

106 - J. Matsuno , N. Ogawa , K. Yasuda 2016
Electron transport coupled with magnetism has attracted attention over the years as exemplified in anomalous Hall effect due to a Berry phase in momentum space. Another type of unconventional Hall effect -- topological Hall effect, originating from t he real-space Berry phase, has recently become of great importance in the context of magnetic skyrmions. We have observed topological Hall effect in bilayers consisting of ferromagnetic SrRuO$_3$ and paramagnetic SrIrO$_3$ over a wide region of both temperature and magnetic field. The topological term rapidly decreases with the thickness of SrRuO$_3$, ending up with the complete disappearance at 7 unit cells of SrRuO$_3$. Combined with model calculation, we concluded that the topological Hall effect is driven by interface Dzyaloshinskii-Moriya interaction, which is caused by both the broken inversion symmetry and the strong spin-orbit coupling of SrIrO$_3$. Such interaction is expected to realize the N{e}el-type magnetic skyrmion, of which size is estimated to be $sim$10 nm from the magnitude of topological Hall resistivity. The results established that the high-quality oxide interface enables us to tune the chirality of the system; this can be a step towards the future topological electronics.
Topological transport phenomena in magnetic materials are a major topic of current condensed matter research. One of the most widely studied phenomena is the ``topological Hall effect (THE), which is generated via spin-orbit interactions between cond uction electrons and topological spin textures such as skyrmions. We report a comprehensive set of Hall effect and magnetization measurements on epitaxial films of the prototypical ferromagnetic metal SrRuO$_3$ the magnetic and transport properties of which were systematically modulated by varying the concentration of Ru vacancies. We observe Hall effect anomalies that closely resemble signatures of the THE, but a quantitative analysis demonstrates that they result from inhomogeneities in the ferromagnetic magnetization caused by a non-random distribution of Ru vacancies. As such inhomogeneities are difficult to avoid and are rarely characterized independently, our results call into question the identification of topological spin textures in numerous prior transport studies of quantum materials, heterostructures, and devices. Firm conclusions regarding the presence of such textures must meet stringent conditions such as probes that couple directly to the non-collinear magnetization on the atomic scale.
A controversy arose over the interpretation of the recently observed hump features in Hall resistivity $rho_{xy}$ from ultra-thin SrRuO$_3$ (SRO) film; it was initially interpreted to be due to topological Hall effect but was later proposed to be fro m existence of regions with different anomalous Hall effect (AHE). In order to settle down the issue, we performed Hall effect as well as magneto-optic Kerr-effect measurements on 4 unit cell SRO films grown on SrTiO$_3$ (001) substrates. Clear hump features are observed in the measured $rho_{xy}$, whereas neither hump feature nor double hysteresis loop is seen in the Kerr rotation which should be proportional to the magnetization. In addition, magnetization measurement by superconducting quantum interference device shows no sign of multiple coercive fields. These results show that inhomogeneous AHE alone cannot explain the observed hump behavior in $rho_{xy}$ data from our SRO ultra-thin films. We found that emergence of the hump structure in $rho_{xy}$ is closely related to the growth condition, high quality films having clear sign of humps.
Artificially fabricated 3$d$/5$d$ superlattices (SLs) involve both strong electron correlation and spin-orbit coupling in one material by means of interfacial 3$d$-5$d$ coupling, whose mechanism remains mostly unexplored. In this work we investigated the mechanism of interfacial coupling in LaMnO$_3$/SrIrO$_3$ SLs by several spectroscopic approaches. Hard x-ray absorption, magnetic circular dichroism and photoemission spectra evidence the systematic change of the Ir ferromagnetism and the electronic structure with the change of the SL repetition period. First-principles calculations further reveal the mechanism of the SL-period dependence of the interfacial electronic structure and the local properties of the Ir moments, confirming that the formation of Ir-Mn molecular orbital is responsible for the interfacial coupling effects. The SL-period dependence of the ratio between spin and orbital components of the Ir magnetic moments can be attributed to the realignment of electron spin during the formation of the interfacial molecular orbital. Our results clarify the nature of interfacial coupling in this prototypical 3$d$/5$d$ SL system and the conclusion will shed light on the study of other strongly correlated and spin-orbit coupled oxide hetero-interfaces.
We study the magneto-optical Kerr effect (MOKE) in SrRuO$_3$ thin films, uncovering wide regimes of wavelength, temperature, and magnetic field where the Kerr rotation is not simply proportional to the magnetization but instead displays two-component behavior. One component of the MOKE signal tracks the average magnetization, while the second anomalous component bears a resemblance to anomalies in the Hall resistivity which have been previously reported in skyrmion materials. We present a theory showing that the MOKE anomalies arise from the non-monotonic relation between the Kerr angle and the magnetization, when we average over magnetic domains which proliferate near the coercive field. Our results suggest that inhomogeneous domain formation, rather than skyrmions, may provide a common origin for the observed MOKE and Hall resistivity anomalies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا