ترغب بنشر مسار تعليمي؟ اضغط هنا

Knowledge Elicitation using Deep Metric Learning and Psychometric Testing

104   0   0.0 ( 0 )
 نشر من قبل Lu Yin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Knowledge present in a domain is well expressed as relationships between corresponding concepts. For example, in zoology, animal species form complex hierarchies; in genomics, the different (parts of) molecules are organized in groups and subgroups based on their functions; plants, molecules, and astronomical objects all form complex taxonomies. Nevertheless, when applying supervised machine learning (ML) in such domains, we commonly reduce the complex and rich knowledge to a fixed set of labels, and induce a model shows good generalization performance with respect to these labels. The main reason for such a reductionist approach is the difficulty in eliciting the domain knowledge from the experts. Developing a label structure with sufficient fidelity and providing comprehensive multi-label annotation can be exceedingly labor-intensive in many real-world applications. In this paper, we provide a method for efficient hierarchical knowledge elicitation (HKE) from experts working with high-dimensional data such as images or videos. Our method is based on psychometric testing and active deep metric learning. The developed models embed the high-dimensional data in a metric space where distances are semantically meaningful, and the data can be organized in a hierarchical structure. We provide empirical evidence with a series of experiments on a synthetically generated dataset of simple shapes, and Cifar 10 and Fashion-MNIST benchmarks that our method is indeed successful in uncovering hierarchical structures.



قيم البحث

اقرأ أيضاً

Assigning meaning to parts of image data is the goal of semantic image segmentation. Machine learning methods, specifically supervised learning is commonly used in a variety of tasks formulated as semantic segmentation. One of the major challenges in the supervised learning approaches is expressing and collecting the rich knowledge that experts have with respect to the meaning present in the image data. Towards this, typically a fixed set of labels is specified and experts are tasked with annotating the pixels, patches or segments in the images with the given labels. In general, however, the set of classes does not fully capture the rich semantic information present in the images. For example, in medical imaging such as histology images, the different parts of cells could be grouped and sub-grouped based on the expertise of the pathologist. To achieve such a precise semantic representation of the concepts in the image, we need access to the full depth of knowledge of the annotator. In this work, we develop a novel approach to collect segmentation annotations from experts based on psychometric testing. Our method consists of the psychometric testing procedure, active query selection, query enhancement, and a deep metric learning model to achieve a patch-level image embedding that allows for semantic segmentation of images. We show the merits of our method with evaluation on the synthetically generated image, aerial image and histology image.
Deep Metric Learning (DML), a widely-used technique, involves learning a distance metric between pairs of samples. DML uses deep neural architectures to learn semantic embeddings of the input, where the distance between similar examples is small whil e dissimilar ones are far apart. Although the underlying neural networks produce good accuracy on naturally occurring samples, they are vulnerable to adversarially-perturbed samples that reduce performance. We take a first step towards training robust DML models and tackle the primary challenge of the metric losses being dependent on the samples in a mini-batch, unlike standard losses that only depend on the specific input-output pair. We analyze this dependence effect and contribute a robust optimization formulation. Using experiments on three commonly-used DML datasets, we demonstrate 5-76 fold increases in adversarial accuracy, and outperform an existing DML model that sought out to be robust.
Accelerating learning processes for complex tasks by leveraging previously learned tasks has been one of the most challenging problems in reinforcement learning, especially when the similarity between source and target tasks is low. This work propose s REPresentation And INstance Transfer (REPAINT) algorithm for knowledge transfer in deep reinforcement learning. REPAINT not only transfers the representation of a pre-trained teacher policy in the on-policy learning, but also uses an advantage-based experience selection approach to transfer useful samples collected following the teacher policy in the off-policy learning. Our experimental results on several benchmark tasks show that REPAINT significantly reduces the total training time in generic cases of task similarity. In particular, when the source tasks are dissimilar to, or sub-tasks of, the target tasks, REPAINT outperforms other baselines in both training-time reduction and asymptotic performance of return scores.
202 - Weixin Liang , James Zou 2020
Recent advances in deep learning have made the use of large, deep neural networks with tens of millions of parameters. The sheer size of these networks imposes a challenging computational burden during inference. Existing work focuses primarily on ac celerating each forward pass of a neural network. Inspired by the group testing strategy for efficient disease testing, we propose neural group testing, which accelerates by testing a group of samples in one forward pass. Groups of samples that test negative are ruled out. If a group tests positive, samples in that group are then retested adaptively. A key challenge of neural group testing is to modify a deep neural network so that it could test multiple samples in one forward pass. We propose three designs to achieve this without introducing any new parameters and evaluate their performances. We applied neural group testing in an image moderation task to detect rare but inappropriate images. We found that neural group testing can group up to 16 images in one forward pass and reduce the overall computation cost by over 73% while improving detection performance.
What is a fair performance metric? We consider the choice of fairness metrics through the lens of metric elicitation -- a principled framework for selecting performance metrics that best reflect implicit preferences. The use of metric elicitation ena bles a practitioner to tune the performance and fairness metrics to the task, context, and population at hand. Specifically, we propose a novel strategy to elicit group-fair performance metrics for multiclass classification problems with multiple sensitive groups that also includes selecting the trade-off between predictive performance and fairness violation. The proposed elicitation strategy requires only relative preference feedback and is robust to both finite sample and feedback noise.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا