ﻻ يوجد ملخص باللغة العربية
One of the important advantages of optical metasurfaces over conventional diffractive optical elements is their capability to efficiently deflect light by large angles. However, metasurfaces are conventionally designed using approaches that are optimal for small deflection angles and their performance for designing high numerical aperture devices is not well quantified. Here we introduce and apply a technique for the estimation of the efficiency of high numerical aperture metasurfaces. The technique is based on a particular coherent averaging of diffraction coefficients of periodic blazed gratings and can be used to compare the performance of different metasurface designs in implementing high numerical aperture devices. Unlike optimization-based methods that rely on full-wave simulations and are only practicable in designing small metasurfaces, the gradient averaging technique allows for the design of arbitrarily large metasurfaces. Using this technique, we identify an unconventional metasurface design and experimentally demonstrate a metalens with a numerical aperture of 0.78 and a measured focusing efficiency of 77%. The grating averaging is a versatile technique applicable to many types of gradient metasurfaces, thus enabling highly efficient metasurface components and systems.
The design of compact optical systems with large field of view has been difficult due to the requirement of many elements or a curved focal plane to reduce off-axis aberration. We propose a multi-aperture lens design to effectively resolve these issu
A new numerical method is developed for solution of the Gelfand - Levitan - Marchenko inverse scattering integral equations. The method is based on the fast inversion procedure of a Toeplitz Hermitian matrix and special bordering technique. The metho
Recently, an achromatic metasurface was successfully demonstrated to deflect light of multiple wavelengths in the same direction and it was further applied to the design of planar lenses without chromatic aberrations [Science, 347, 1342(2015)]. Howev
Actively tunable and reconfigurable wavefront shaping by optical metasurfaces poses a significant technical challenge often requiring unconventional materials engineering and nanofabrication. Most wavefront-shaping metasurfaces can be considered loca