ﻻ يوجد ملخص باللغة العربية
Antagonistic salts are salts which consist of hydrophilic and hydrophobic ions. In a binary mixture of water and organic solvent, these ions preferentially dissolve into different phases. We investigate the effect of an antagonistic salt, tetraphenylphosphonium chloride PPh$_4$Cl, in a mixture of water and 2,6-lutidine by means of Molecular Dynamics (MD) Simulations. For increasing concentrations of the salt the two-phase region is shrunk and the interfacial tension in reduced, in contrast to what happens when a normal salt is added to such a mixture. The MD simulations allow us to investigate in detail the mechanism behind the reduction of the surface tension. We obtain the ion and composition distributions around the interface and determine the hydrogen bonds in the system and conclude that the addition of salt alter the hydrogen bonding.
The speculated presence of monomolecular lamellae of antagonistic salts in oil-water mixtures has left several open questions besides their hypothetical existence, including their microscopic structure and stabilization mechanism. Here, we simulate t
A small, bimetallic particle in a hydrogen peroxide solution can propel itself by means of an electrocatalytic reaction. The swimming is driven by a flux of ions around the particle. We model this process for the presence of a monovalent salt, where
Vegetable oil based hybrid films were developed thanks to a novel solvent- and heating- free method at the air-water interface using silylated castor oil cross-linked via a sol-gel reaction. To understand the mechanism of the hybrid film formation, t
A study of a model rod-like polyelectrolyte molecule immersed into a monovalent or divalent electrolyte is presented. Results from the hypernetted-chain/mean spherical approximation (HNC/MSA) theory, for inhomogeneous charged fluids, {ch are} compare
We study the strong-coupling (SC) interaction between two like-charged membranes of finite thickness embedded in a medium of higher dielectric constant. A generalized SC theory is applied along with extensive Monte-Carlo simulations to study the imag